1,549 research outputs found

    Relaxation and Metastability in the RandomWalkSAT search procedure

    Full text link
    An analysis of the average properties of a local search resolution procedure for the satisfaction of random Boolean constraints is presented. Depending on the ratio alpha of constraints per variable, resolution takes a time T_res growing linearly (T_res \sim tau(alpha) N, alpha < alpha_d) or exponentially (T_res \sim exp(N zeta(alpha)), alpha > alpha_d) with the size N of the instance. The relaxation time tau(alpha) in the linear phase is calculated through a systematic expansion scheme based on a quantum formulation of the evolution operator. For alpha > alpha_d, the system is trapped in some metastable state, and resolution occurs from escape from this state through crossing of a large barrier. An annealed calculation of the height zeta(alpha) of this barrier is proposed. The polynomial/exponentiel cross-over alpha_d is not related to the onset of clustering among solutions.Comment: 23 pages, 11 figures. A mistake in sec. IV.B has been correcte

    Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms

    Full text link
    Stochastic local search algorithms are frequently used to numerically solve hard combinatorial optimization or decision problems. We give numerical and approximate analytical descriptions of the dynamics of such algorithms applied to random satisfiability problems. We find two different dynamical regimes, depending on the number of constraints per variable: For low constraintness, the problems are solved efficiently, i.e. in linear time. For higher constraintness, the solution times become exponential. We observe that the dynamical behavior is characterized by a fast equilibration and fluctuations around this equilibrium. If the algorithm runs long enough, an exponentially rare fluctuation towards a solution appears.Comment: 21 pages, 18 figures, revised version, to app. in PRE (2003

    Dynamics of heuristic optimization algorithms on random graphs

    Full text link
    In this paper, the dynamics of heuristic algorithms for constructing small vertex covers (or independent sets) of finite-connectivity random graphs is analysed. In every algorithmic step, a vertex is chosen with respect to its vertex degree. This vertex, and some environment of it, is covered and removed from the graph. This graph reduction process can be described as a Markovian dynamics in the space of random graphs of arbitrary degree distribution. We discuss some solvable cases, including algorithms already analysed using different techniques, and develop approximation schemes for more complicated cases. The approximations are corroborated by numerical simulations.Comment: 19 pages, 3 figures, version to app. in EPJ
    • …
    corecore