12 research outputs found

    Differential Privacy for the Analyst via Private Equilibrium Computation

    Full text link
    We give new mechanisms for answering exponentially many queries from multiple analysts on a private database, while protecting differential privacy both for the individuals in the database and for the analysts. That is, our mechanism's answer to each query is nearly insensitive to changes in the queries asked by other analysts. Our mechanism is the first to offer differential privacy on the joint distribution over analysts' answers, providing privacy for data analysts even if the other data analysts collude or register multiple accounts. In some settings, we are able to achieve nearly optimal error rates (even compared to mechanisms which do not offer analyst privacy), and we are able to extend our techniques to handle non-linear queries. Our analysis is based on a novel view of the private query-release problem as a two-player zero-sum game, which may be of independent interest

    Private Matchings and Allocations

    Get PDF
    We consider a private variant of the classical allocation problem: given k goods and n agents with individual, private valuation functions over bundles of goods, how can we partition the goods amongst the agents to maximize social welfare? An important special case is when each agent desires at most one good, and specifies her (private) value for each good: in this case, the problem is exactly the maximum-weight matching problem in a bipartite graph. Private matching and allocation problems have not been considered in the differential privacy literature, and for good reason: they are plainly impossible to solve under differential privacy. Informally, the allocation must match agents to their preferred goods in order to maximize social welfare, but this preference is exactly what agents wish to hide. Therefore, we consider the problem under the relaxed constraint of joint differential privacy: for any agent i, no coalition of agents excluding i should be able to learn about the valuation function of agent i. In this setting, the full allocation is no longer published---instead, each agent is told what good to get. We first show that with a small number of identical copies of each good, it is possible to efficiently and accurately solve the maximum weight matching problem while guaranteeing joint differential privacy. We then consider the more general allocation problem, when bidder valuations satisfy the gross substitutes condition. Finally, we prove that the allocation problem cannot be solved to non-trivial accuracy under joint differential privacy without requiring multiple copies of each type of good.Comment: Journal version published in SIAM Journal on Computation; an extended abstract appeared in STOC 201

    The Optimal Mechanism in Differential Privacy

    Full text link
    We derive the optimal ϵ\epsilon-differentially private mechanism for single real-valued query function under a very general utility-maximization (or cost-minimization) framework. The class of noise probability distributions in the optimal mechanism has {\em staircase-shaped} probability density functions which are symmetric (around the origin), monotonically decreasing and geometrically decaying. The staircase mechanism can be viewed as a {\em geometric mixture of uniform probability distributions}, providing a simple algorithmic description for the mechanism. Furthermore, the staircase mechanism naturally generalizes to discrete query output settings as well as more abstract settings. We explicitly derive the optimal noise probability distributions with minimum expectation of noise amplitude and power. Comparing the optimal performances with those of the Laplacian mechanism, we show that in the high privacy regime (ϵ\epsilon is small), Laplacian mechanism is asymptotically optimal as ϵ0\epsilon \to 0; in the low privacy regime (ϵ\epsilon is large), the minimum expectation of noise amplitude and minimum noise power are Θ(Δeϵ2)\Theta(\Delta e^{-\frac{\epsilon}{2}}) and Θ(Δ2e2ϵ3)\Theta(\Delta^2 e^{-\frac{2\epsilon}{3}}) as ϵ+\epsilon \to +\infty, while the expectation of noise amplitude and power using the Laplacian mechanism are Δϵ\frac{\Delta}{\epsilon} and 2Δ2ϵ2\frac{2\Delta^2}{\epsilon^2}, where Δ\Delta is the sensitivity of the query function. We conclude that the gains are more pronounced in the low privacy regime.Comment: 40 pages, 5 figures. Part of this work was presented in DIMACS Workshop on Recent Work on Differential Privacy across Computer Science, October 24 - 26, 201

    New oracle-efficient algorithms for private synthetic data release

    Full text link
    We present three new algorithms for constructing differentially private synthetic data—a sanitized version of a sensitive dataset that approximately preserves the answers to a large collection of statistical queries. All three algorithms are oracle-efficient in the sense that they are computationally efficient when given access to an optimization oracle. Such an oracle can be implemented using many existing (non-private) optimization tools such as sophisticated integer program solvers. While the accuracy of the synthetic data is contingent on the oracle’s optimization performance, the algorithms satisfy differential privacy even in the worst case. For all three algorithms, we provide theoretical guarantees for both accuracy and privacy. Through empirical evaluation, we demonstrate that our methods scale well with both the dimensionality of the data and the number of queries. Compared to the state-of-the-art method High-Dimensional Matrix Mechanism McKenna et al. (2018), our algorithms provide better accuracy in the large workload and high privacy regime (corresponding to low privacy loss ε).https://arxiv.org/pdf/2007.05453.pd
    corecore