32,050 research outputs found

    PIETOOLS: A Matlab Toolbox for Manipulation and Optimization of Partial Integral Operators

    Full text link
    In this paper, we present PIETOOLS, a MATLAB toolbox for the construction and handling of Partial Integral (PI) operators. The toolbox introduces a new class of MATLAB object, opvar, for which standard MATLAB matrix operation syntax (e.g. +, *, ' e tc.) is defined. PI operators are a generalization of bounded linear operators on infinite-dimensional spaces that form a *-subalgebra with two binary operations (addition and composition) on the space RxL2. These operators frequently appear in analysis and control of infinite-dimensional systems such as Partial Differential equations (PDE) and Time-delay systems (TDS). Furthermore, PIETOOLS can: declare opvar decision variables, add operator positivity constraints, declare an objective function, and solve the resulting optimization problem using a syntax similar to the sdpvar class in YALMIP. Use of the resulting Linear Operator Inequalities (LOIs) are demonstrated on several examples, including stability analysis of a PDE, bounding operator norms, and verifying integral inequalities. The result is that PIETOOLS, packaged with SOSTOOLS and MULTIPOLY, offers a scalable, user-friendly and computationally efficient toolbox for parsing, performing algebraic operations, setting up and solving convex optimization problems on PI operators

    Convex Optimization for Linear Query Processing under Approximate Differential Privacy

    Full text link
    Differential privacy enables organizations to collect accurate aggregates over sensitive data with strong, rigorous guarantees on individuals' privacy. Previous work has found that under differential privacy, computing multiple correlated aggregates as a batch, using an appropriate \emph{strategy}, may yield higher accuracy than computing each of them independently. However, finding the best strategy that maximizes result accuracy is non-trivial, as it involves solving a complex constrained optimization program that appears to be non-linear and non-convex. Hence, in the past much effort has been devoted in solving this non-convex optimization program. Existing approaches include various sophisticated heuristics and expensive numerical solutions. None of them, however, guarantees to find the optimal solution of this optimization problem. This paper points out that under (ϵ\epsilon, δ\delta)-differential privacy, the optimal solution of the above constrained optimization problem in search of a suitable strategy can be found, rather surprisingly, by solving a simple and elegant convex optimization program. Then, we propose an efficient algorithm based on Newton's method, which we prove to always converge to the optimal solution with linear global convergence rate and quadratic local convergence rate. Empirical evaluations demonstrate the accuracy and efficiency of the proposed solution.Comment: to appear in ACM SIGKDD 201

    Semi-definite programming and functional inequalities for Distributed Parameter Systems

    Full text link
    We study one-dimensional integral inequalities, with quadratic integrands, on bounded domains. Conditions for these inequalities to hold are formulated in terms of function matrix inequalities which must hold in the domain of integration. For the case of polynomial function matrices, sufficient conditions for positivity of the matrix inequality and, therefore, for the integral inequalities are cast as semi-definite programs. The inequalities are used to study stability of linear partial differential equations.Comment: 8 pages, 5 figure
    • …
    corecore