5 research outputs found

    MobilityMirror: Bias-Adjusted Transportation Datasets

    Full text link
    We describe customized synthetic datasets for publishing mobility data. Private companies are providing new transportation modalities, and their data is of high value for integrative transportation research, policy enforcement, and public accountability. However, these companies are disincentivized from sharing data not only to protect the privacy of individuals (drivers and/or passengers), but also to protect their own competitive advantage. Moreover, demographic biases arising from how the services are delivered may be amplified if released data is used in other contexts. We describe a model and algorithm for releasing origin-destination histograms that removes selected biases in the data using causality-based methods. We compute the origin-destination histogram of the original dataset then adjust the counts to remove undesirable causal relationships that can lead to discrimination or violate contractual obligations with data owners. We evaluate the utility of the algorithm on real data from a dockless bike share program in Seattle and taxi data in New York, and show that these adjusted transportation datasets can retain utility while removing bias in the underlying data.Comment: Presented at BIDU 2018 workshop and published in Springer Communications in Computer and Information Science vol 92

    SoK: Chasing Accuracy and Privacy, and Catching Both in Differentially Private Histogram Publication

    Get PDF
    Histograms and synthetic data are of key importance in data analysis. However, researchers have shown that even aggregated data such as histograms, containing no obvious sensitive attributes, can result in privacy leakage. To enable data analysis, a strong notion of privacy is required to avoid risking unintended privacy violations.Such a strong notion of privacy is differential privacy, a statistical notion of privacy that makes privacy leakage quantifiable. The caveat regarding differential privacy is that while it has strong guarantees for privacy, privacy comes at a cost of accuracy. Despite this trade-off being a central and important issue in the adoption of differential privacy, there exists a gap in the literature regarding providing an understanding of the trade-off and how to address it appropriately. Through a systematic literature review (SLR), we investigate the state-of-the-art within accuracy improving differentially private algorithms for histogram and synthetic data publishing. Our contribution is two-fold: 1) we identify trends and connections in the contributions to the field of differential privacy for histograms and synthetic data and 2) we provide an understanding of the privacy/accuracy trade-off challenge by crystallizing different dimensions to accuracy improvement. Accordingly, we position and visualize the ideas in relation to each other and external work, and deconstruct each algorithm to examine the building blocks separately with the aim of pinpointing which dimension of accuracy improvement each technique/approach is targeting. Hence, this systematization of knowledge (SoK) provides an understanding of in which dimensions and how accuracy improvement can be pursued without sacrificing privacy
    corecore