320 research outputs found

    Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

    Full text link
    A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201

    Segmentation-based multi-scale edge extraction to measure the persistence of features in unorganized point clouds

    Get PDF
    Edge extraction has attracted a lot of attention in computer vision. The accuracy of extracting edges in point clouds can be a significant asset for a variety of engineering scenarios. To address these issues, we propose a segmentation-based multi-scale edge extraction technique. In this approach, different regions of a point cloud are segmented by a global analysis according to the geodesic distance. Afterwards, a multi-scale operator is defined according to local neighborhoods. Thereupon, by applying this operator at multiple scales of the point cloud, the persistence of features is determined. We illustrate the proposed method by computing a feature weight that measures the likelihood of a point to be an edge, then detects the edge points based on that value at both global and local scales. Moreover, we evaluate quantitatively and qualitatively our method. Experimental results show that the proposed approach achieves a superior accuracy. Furthermore, we demonstrate the robustness of our approach in noisier real-world datasets.Peer ReviewedPostprint (author's final draft

    Point Cloud Structural Parts Extraction based on Segmentation Energy Minimization

    Get PDF
    In this work we consider 3D point sets, which in a typical setting represent unorganized point clouds. Segmentation of these point sets requires first to single out structural components of the unknown surface discretely approximated by the point cloud. Structural components, in turn, are surface patches approximating unknown parts of elementary geometric structures, such as planes, ellipsoids, spheres and so on. The approach used is based on level set methods computing the moving front of the surface and tracing the interfaces between different parts of it. Level set methods are widely recognized to be one of the most efficient methods to segment both 2D images and 3D medical images. Level set methods for 3D segmentation have recently received an increasing interest. We contribute by proposing a novel approach for raw point sets. Based on the motion and distance functions of the level set we introduce four energy minimization models, which are used for segmentation, by considering an equal number of distance functions specified by geometric features. Finally we evaluate the proposed algorithm on point sets simulating unorganized point clouds

    A software tool for the semi-automatic segmentation of architectural 3D models with semantic annotation and Web fruition

    Get PDF
    The thorough documentation of Cultural Heritage artifacts is a fundamental concern for management and preservation. In this context, the semantic segmentation and annotation of 3D models of historic buildings is an important modern topic. This work describes a software tool currently under development, for interactive and semi-automatic segmentation, characterization, and annotation of 3D models produced by photogrammetric surveys. The system includes some generic and well-known segmentation approaches, such as region growing and Locally Convex Connected Patches segmentation, but it also contains original code for specific semantic segmentation of parts of buildings, in particular straight stairs and circular-section columns. Furthermore, a method for automatic wall-surface characterization is devoted to rusticated-ashlar detection, in view of masonry-unit segmentation. The software is modular, so allowing easy expandability. It also has tools for data encoding into formats ready for model fruition by Web technologies. These results were partly obtained in collaboration with Corvallis SPA (Padua-Italy, http://www.corvallis.it)

    Quantitative Analysis of Saliency Models

    Full text link
    Previous saliency detection research required the reader to evaluate performance qualitatively, based on renderings of saliency maps on a few shapes. This qualitative approach meant it was unclear which saliency models were better, or how well they compared to human perception. This paper provides a quantitative evaluation framework that addresses this issue. In the first quantitative analysis of 3D computational saliency models, we evaluate four computational saliency models and two baseline models against ground-truth saliency collected in previous work.Comment: 10 page
    • …
    corecore