60,669 research outputs found

    Regio- and Stereoselective Ruthenium Catalyzed Hydrovinylation of 1,3-Dienes: Application to the Generation of a 20S-Steroidal Sidechain

    Get PDF
    The addition of ethylene to 1,3-dienes and 1-vinylcycloalkenes, catalyzed by two ruthenium complexes, proceeds in a regioselective fashion to afford 3-methyl-1,4-dienes as products. For a steroidal-based 1-vinylcycloalkene, the addition is stereospecific, giving a product with a 20(S) configuration

    New Directions for New Dimensions: From Strings to Neutrinos to Axions to...

    Get PDF
    In this talk, I discuss recent developments concerning the possibility of large extra spacetime dimensions. After briefly reviewing how such dimensions can lower the fundamental GUT, Planck, and string scales, I then outline how these scenarios lead to a new higher-dimensional seesaw mechanism for generating neutrino oscillations --- perhaps even without neutrino masses. I also discuss how extra dimensions lead to new mechanisms contributing to the ``invisibility'' of the QCD axion. This talk reports on work done in collaboration with Emilian Dudas and Tony Gherghetta.Comment: 12 pages, LaTeX, 4 figures. Invited plenary talk given at PASCOS '99 (held at Lake Tahoe, California, 10-16 December 1999). To appear in the Proceeding

    Bidentate N,O-prolinate ruthenium benzylidene catalyst highly active in RCM of disubstituted dienes

    Get PDF
    The synthesis of a bidentate N,O-prolinate ruthenium benzylidene from commercially available starting materials and its activity in ring-closing metathesis of functionalized disubstituted dienes at 30 °C is disclosed

    Shape versus Volume: Making Large Flat Extra Dimensions Invisible

    Get PDF
    Much recent attention has focused on theories with large extra compactified dimensions. However, while the phenomenological implications of the volume moduli associated with such compactifications are well understood, relatively little attention has been devoted to the shape moduli. In this paper, we show that the shape moduli have a dramatic effect on the corresponding Kaluza-Klein spectra: they change the mass gap, induce level crossings, and can even be used to interpolate between theories with different numbers of compactified dimensions. Furthermore, we show that in certain cases it is possible to maintain the ratio between the higher-dimensional and four-dimensional Planck scales while simultaneously increasing the Kaluza-Klein graviton mass gap by an arbitrarily large factor. This mechanism can therefore be used to alleviate (or perhaps even eliminate) many of the experimental bounds on theories with large extra spacetime dimensions.Comment: 9 pages, LaTeX, 5 figure

    The Worldsheet Conformal Field Theory of the Fractional Superstring

    Get PDF
    Two of the important unresolved issues concerning fractional superstrings have been the appearance of new massive sectors whose spacetime statistics properties are unclear, and the appearance of new types of ``internal projections'' which alter or deform the worldsheet conformal field theory in a highly non-trivial manner. In this paper we provide a systematic analysis of these two connected issues, and explicitly map out the effective post-projection worldsheet theories for each of the fractional-superstring sectors. In this way we determine their central charges, highest weights, fusion rules, and characters, and find that these theories are isomorphic to those of free worldsheet bosons and fermions. We also analyze the recently-discovered parafermionic ``twist current'' which has been shown to play an important role in reorganizing the fractional-superstring Fock space, and find that this current can be expressed directly in terms of the primary fields of the post-projection theory. This thereby enables us to deduce some of the spacetime statistics properties of the surviving states.Comment: 56 pages (LaTeX), McGill/93-01. (discussion clarified in places, but results unchanged

    Seeing is as Good as Doing

    Get PDF
    Given the privileged status claimed for active learning in a variety of domains (visuomotor learning, causal induction, problem solving, education, skill learning), the present study examines whether action-based learning is a necessary, or a suffi cient, means of acquiring the relevant skills needed to perform a task typically described as requiring active learning. To achieve this, the present study compares the effects of action-based and observation-based learning when controlling a complex dynamic task environment (N = 96). Both action- and observation-based individuals learn either by describing the changes in the environment in the form of a conditional statement, or not. The study reveals that for both active and observational learners, advantages in performance (p < .05), accuracy in knowledge of the task (p < .05), and self-insight (p < .05) are found when learning is based on inducing rules from the task environment. Moreover, the study provides evidence suggesting that, given task instructions that encourage rule-based knowledge, both active and observation-based learning can lead to high levels of problem solving skills in a complex dynamic environment
    corecore