3 research outputs found

    Die-out Probability in SIS Epidemic Processes on Networks

    Full text link
    An accurate approximate formula of the die-out probability in a SIS epidemic process on a network is proposed. The formula contains only three essential parameters: the largest eigenvalue of the adjacency matrix of the network, the effective infection rate of the virus, and the initial number of infected nodes in the network. The die-out probability formula is compared with the exact die-out probability in complete graphs, Erd\H{o}s-R\'enyi graphs, and a power-law graph. Furthermore, as an example, the formula is applied to the NN-Intertwined Mean-Field Approximation, to explicitly incorporate the die-out.Comment: Version2: 10 figures, 11 pagers. Corrected typos; simulation results of ER graphs and a power-law graph are added. Accepted by the 5th International Workshop on Complex Networks and their Applications, November 30 - December 02, 2016, Milan, Ital

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page
    corecore