13 research outputs found

    Revisiting Gray Pixel for Statistical Illumination Estimation

    Get PDF
    We present a statistical color constancy method that relies on novel gray pixel detection and mean shift clustering. The method, called Mean Shifted Grey Pixel -- MSGP, is based on the observation: true-gray pixels are aligned towards one single direction. Our solution is compact, easy to compute and requires no training. Experiments on two real-world benchmarks show that the proposed approach outperforms state-of-the-art methods in the camera-agnostic scenario. In the setting where the camera is known, MSGP outperforms all statistical methods.Comment: updated and will appear in VISSAP 2019 (long paper

    Color Constancy Convolutional Autoencoder

    Full text link
    In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.Comment: 6 pages, 1 figure, 3 table

    Bag of Color Features For Color Constancy

    Get PDF
    In this paper, we propose a novel color constancy approach, called Bag of Color Features (BoCF), building upon Bag-of-Features pooling. The proposed method substantially reduces the number of parameters needed for illumination estimation. At the same time, the proposed method is consistent with the color constancy assumption stating that global spatial information is not relevant for illumination estimation and local information ( edges, etc.) is sufficient. Furthermore, BoCF is consistent with color constancy statistical approaches and can be interpreted as a learning-based generalization of many statistical approaches. To further improve the illumination estimation accuracy, we propose a novel attention mechanism for the BoCF model with two variants based on self-attention. BoCF approach and its variants achieve competitive, compared to the state of the art, results while requiring much fewer parameters on three benchmark datasets: ColorChecker RECommended, INTEL-TUT version 2, and NUS8.Comment: 12 pages, 5 figures, 6 table

    Semantik renk değişmezliği

    Get PDF
    Color constancy aims to perceive the actual color of an object, disregarding the effectof the light source. Recent works showed that utilizing the semantic information inan image enhances the performance of the computational color constancy methods.Considering the recent success of the segmentation methods and the increased numberof labeled images, we propose a color constancy method that combines individualilluminant estimations of detected objects which are computed using the classes of theobjects and their associated colors. Then we introduce a weighting system that valuesthe applicability of the object classes to the color constancy problem. Lastly, weintroduce another metric expressing the detected object and how well it fits the learnedmodel of its class. Finally, we evaluate our proposed method on a popular colorconstancy dataset, confirming that each weight addition enhances the performanceof the global illuminant estimation. Experimental results show promising results,outperforming the conventional methods while competing with the state of the artmethods.--M.S. - Master of Scienc

    Translational Functional Imaging in Surgery Enabled by Deep Learning

    Get PDF
    Many clinical applications currently rely on several imaging modalities such as Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Computed Tomography (CT), etc. All such modalities provide valuable patient data to the clinical staff to aid clinical decision-making and patient care. Despite the undeniable success of such modalities, most of them are limited to preoperative scans and focus on morphology analysis, e.g. tumor segmentation, radiation treatment planning, anomaly detection, etc. Even though the assessment of different functional properties such as perfusion is crucial in many surgical procedures, it remains highly challenging via simple visual inspection. Functional imaging techniques such as Spectral Imaging (SI) link the unique optical properties of different tissue types with metabolism changes, blood flow, chemical composition, etc. As such, SI is capable of providing much richer information that can improve patient treatment and care. In particular, perfusion assessment with functional imaging has become more relevant due to its involvement in the treatment and development of several diseases such as cardiovascular diseases. Current clinical practice relies on Indocyanine Green (ICG) injection to assess perfusion. Unfortunately, this method can only be used once per surgery and has been shown to trigger deadly complications in some patients (e.g. anaphylactic shock). This thesis addressed common roadblocks in the path to translating optical functional imaging modalities to clinical practice. The main challenges that were tackled are related to a) the slow recording and processing speed that SI devices suffer from, b) the errors introduced in functional parameter estimations under changing illumination conditions, c) the lack of medical data, and d) the high tissue inter-patient heterogeneity that is commonly overlooked. This framework follows a natural path to translation that starts with hardware optimization. To overcome the limitation that the lack of labeled clinical data and current slow SI devices impose, a domain- and task-specific band selection component was introduced. The implementation of such component resulted in a reduction of the amount of data needed to monitor perfusion. Moreover, this method leverages large amounts of synthetic data, which paired with unlabeled in vivo data is capable of generating highly accurate simulations of a wide range of domains. This approach was validated in vivo in a head and neck rat model, and showed higher oxygenation contrast between normal and cancerous tissue, in comparison to a baseline using all available bands. The need for translation to open surgical procedures was met by the implementation of an automatic light source estimation component. This method extracts specular reflections from low exposure spectral images, and processes them to obtain an estimate of the light source spectrum that generated such reflections. The benefits of light source estimation were demonstrated in silico, in ex vivo pig liver, and in vivo human lips, where the oxygenation estimation error was reduced when utilizing the correct light source estimated with this method. These experiments also showed that the performance of the approach proposed in this thesis surpass the performance of other baseline approaches. Video-rate functional property estimation was achieved by two main components: a regression and an Out-of-Distribution (OoD) component. At the core of both components is a compact SI camera that is paired with state-of-the-art deep learning models to achieve real time functional estimations. The first of such components features a deep learning model based on a Convolutional Neural Network (CNN) architecture that was trained on highly accurate physics-based simulations of light-tissue interactions. By doing this, the challenge of lack of in vivo labeled data was overcome. This approach was validated in the task of perfusion monitoring in pig brain and in a clinical study involving human skin. It was shown that this approach is capable of monitoring subtle perfusion changes in human skin in an arm clamping experiment. Even more, this approach was capable of monitoring Spreading Depolarizations (SDs) (deoxygenation waves) in the surface of a pig brain. Even though this method is well suited for perfusion monitoring in domains that are well represented with the physics-based simulations on which it was trained, its performance cannot be guaranteed for outlier domains. To handle outlier domains, the task of ischemia monitoring was rephrased as an OoD detection task. This new functional estimation component comprises an ensemble of Invertible Neural Networks (INNs) that only requires perfused tissue data from individual patients to detect ischemic tissue as outliers. The first ever clinical study involving a video-rate capable SI camera in laparoscopic partial nephrectomy was designed to validate this approach. Such study revealed particularly high inter-patient tissue heterogeneity under the presence of pathologies (cancer). Moreover, it demonstrated that this personalized approach is now capable of monitoring ischemia at video-rate with SI during laparoscopic surgery. In conclusion, this thesis addressed challenges related to slow image recording and processing during surgery. It also proposed a method for light source estimation to facilitate translation to open surgical procedures. Moreover, the methodology proposed in this thesis was validated in a wide range of domains: in silico, rat head and neck, pig liver and brain, and human skin and kidney. In particular, the first clinical trial with spectral imaging in minimally invasive surgery demonstrated that video-rate ischemia monitoring is now possible with deep learning

    COLOR MAPPING FOR CAMERA-BASED COLOR CALIBRATION AND COLOR TRANSFER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Image Color Correction, Enhancement, and Editing

    Get PDF
    This thesis presents methods and approaches to image color correction, color enhancement, and color editing. To begin, we study the color correction problem from the standpoint of the camera's image signal processor (ISP). A camera's ISP is hardware that applies a series of in-camera image processing and color manipulation steps, many of which are nonlinear in nature, to render the initial sensor image to its final photo-finished representation saved in the 8-bit standard RGB (sRGB) color space. As white balance (WB) is one of the major procedures applied by the ISP for color correction, this thesis presents two different methods for ISP white balancing. Afterwards, we discuss another scenario of correcting and editing image colors, where we present a set of methods to correct and edit WB settings for images that have been improperly white-balanced by the ISP. Then, we explore another factor that has a significant impact on the quality of camera-rendered colors, in which we outline two different methods to correct exposure errors in camera-rendered images. Lastly, we discuss post-capture auto color editing and manipulation. In particular, we propose auto image recoloring methods to generate different realistic versions of the same camera-rendered image with new colors. Through extensive evaluations, we demonstrate that our methods provide superior solutions compared to existing alternatives targeting color correction, color enhancement, and color editing

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore