509,543 research outputs found

    Learning End-to-End Goal-Oriented Dialog with Multiple Answers

    Full text link
    In a dialog, there can be multiple valid next utterances at any point. The present end-to-end neural methods for dialog do not take this into account. They learn with the assumption that at any time there is only one correct next utterance. In this work, we focus on this problem in the goal-oriented dialog setting where there are different paths to reach a goal. We propose a new method, that uses a combination of supervised learning and reinforcement learning approaches to address this issue. We also propose a new and more effective testbed, permuted-bAbI dialog tasks, by introducing multiple valid next utterances to the original-bAbI dialog tasks, which allows evaluation of goal-oriented dialog systems in a more realistic setting. We show that there is a significant drop in performance of existing end-to-end neural methods from 81.5% per-dialog accuracy on original-bAbI dialog tasks to 30.3% on permuted-bAbI dialog tasks. We also show that our proposed method improves the performance and achieves 47.3% per-dialog accuracy on permuted-bAbI dialog tasks.Comment: EMNLP 2018. permuted-bAbI dialog tasks are available at - https://github.com/IBM/permuted-bAbI-dialog-task

    Tracking of enriched dialog states for flexible conversational information access

    Full text link
    Dialog state tracking (DST) is a crucial component in a task-oriented dialog system for conversational information access. A common practice in current dialog systems is to define the dialog state by a set of slot-value pairs. Such representation of dialog states and the slot-filling based DST have been widely employed, but suffer from three drawbacks. (1) The dialog state can contain only a single value for a slot, and (2) can contain only users' affirmative preference over the values for a slot. (3) Current task-based dialog systems mainly focus on the searching task, while the enquiring task is also very common in practice. The above observations motivate us to enrich current representation of dialog states and collect a brand new dialog dataset about movies, based upon which we build a new DST, called enriched DST (EDST), for flexible accessing movie information. The EDST supports the searching task, the enquiring task and their mixed task. We show that the new EDST method not only achieves good results on Iqiyi dataset, but also outperforms other state-of-the-art DST methods on the traditional dialog datasets, WOZ2.0 and DSTC2.Comment: 5 pages, 2 figures, accepted by ICASSP201

    Contextual Out-of-Domain Utterance Handling With Counterfeit Data Augmentation

    Full text link
    Neural dialog models often lack robustness to anomalous user input and produce inappropriate responses which leads to frustrating user experience. Although there are a set of prior approaches to out-of-domain (OOD) utterance detection, they share a few restrictions: they rely on OOD data or multiple sub-domains, and their OOD detection is context-independent which leads to suboptimal performance in a dialog. The goal of this paper is to propose a novel OOD detection method that does not require OOD data by utilizing counterfeit OOD turns in the context of a dialog. For the sake of fostering further research, we also release new dialog datasets which are 3 publicly available dialog corpora augmented with OOD turns in a controllable way. Our method outperforms state-of-the-art dialog models equipped with a conventional OOD detection mechanism by a large margin in the presence of OOD utterances.Comment: ICASSP 201
    corecore