509,543 research outputs found
Learning End-to-End Goal-Oriented Dialog with Multiple Answers
In a dialog, there can be multiple valid next utterances at any point. The
present end-to-end neural methods for dialog do not take this into account.
They learn with the assumption that at any time there is only one correct next
utterance. In this work, we focus on this problem in the goal-oriented dialog
setting where there are different paths to reach a goal. We propose a new
method, that uses a combination of supervised learning and reinforcement
learning approaches to address this issue. We also propose a new and more
effective testbed, permuted-bAbI dialog tasks, by introducing multiple valid
next utterances to the original-bAbI dialog tasks, which allows evaluation of
goal-oriented dialog systems in a more realistic setting. We show that there is
a significant drop in performance of existing end-to-end neural methods from
81.5% per-dialog accuracy on original-bAbI dialog tasks to 30.3% on
permuted-bAbI dialog tasks. We also show that our proposed method improves the
performance and achieves 47.3% per-dialog accuracy on permuted-bAbI dialog
tasks.Comment: EMNLP 2018. permuted-bAbI dialog tasks are available at -
https://github.com/IBM/permuted-bAbI-dialog-task
Tracking of enriched dialog states for flexible conversational information access
Dialog state tracking (DST) is a crucial component in a task-oriented dialog
system for conversational information access. A common practice in current
dialog systems is to define the dialog state by a set of slot-value pairs. Such
representation of dialog states and the slot-filling based DST have been widely
employed, but suffer from three drawbacks. (1) The dialog state can contain
only a single value for a slot, and (2) can contain only users' affirmative
preference over the values for a slot. (3) Current task-based dialog systems
mainly focus on the searching task, while the enquiring task is also very
common in practice. The above observations motivate us to enrich current
representation of dialog states and collect a brand new dialog dataset about
movies, based upon which we build a new DST, called enriched DST (EDST), for
flexible accessing movie information. The EDST supports the searching task, the
enquiring task and their mixed task. We show that the new EDST method not only
achieves good results on Iqiyi dataset, but also outperforms other
state-of-the-art DST methods on the traditional dialog datasets, WOZ2.0 and
DSTC2.Comment: 5 pages, 2 figures, accepted by ICASSP201
Contextual Out-of-Domain Utterance Handling With Counterfeit Data Augmentation
Neural dialog models often lack robustness to anomalous user input and
produce inappropriate responses which leads to frustrating user experience.
Although there are a set of prior approaches to out-of-domain (OOD) utterance
detection, they share a few restrictions: they rely on OOD data or multiple
sub-domains, and their OOD detection is context-independent which leads to
suboptimal performance in a dialog. The goal of this paper is to propose a
novel OOD detection method that does not require OOD data by utilizing
counterfeit OOD turns in the context of a dialog. For the sake of fostering
further research, we also release new dialog datasets which are 3 publicly
available dialog corpora augmented with OOD turns in a controllable way. Our
method outperforms state-of-the-art dialog models equipped with a conventional
OOD detection mechanism by a large margin in the presence of OOD utterances.Comment: ICASSP 201
- …
