29,876 research outputs found

    Transcritical Carbon Dioxide Charge-Discharge Energy Storage with Integration of Solar Energy

    Get PDF
    New and improved energy storage technologies are required to overcome non-dispatchability, which is the main challenge for the successful integration of large shares of renewable energy within energy supply systems. Energy storage is proposed to tackle daily variations on the demand side, i.e., storing low-price energy during off-peak or valley periods for utilization during peak periods. Regarding electrical energy storage, several technologies are available with different potentials for scalability, density, and cost. A recent approach for grid-scale applications is based on transcritical carbon dioxide charge and discharge cycles in combination with thermal energy storage systems. This alternative to pumped-hydro and compressed air energy storage has been discussed in scientific literature, where different configurations have been proposed and their efficiency and costs calculated. The potential of the concept has been demonstrated to be an economical alternative, including hybrid concepts with solar thermal storage. Even at low temperatures, the addition of solar energy has proved to be cost effective. This paper explores the effect of introducing solar-based high temperature heat on the performance of different configurations of “Transcritical carbon dioxide ‒ thermal energy storage system” cycles. A base-cycle with 8-hour discharge time is compared with different layouts. Discussions include details on the models, parametric analyses -including solar technology alternatives-, and simulation results. Round trip efficiency of the base case, without solar support and at pressure ratio of 9.4, is 52%. When solar input is considered, the efficiency is above 60%, increasing the turbine inlet temperature to 950 K. Estimated levelized cost of electricity values are in the range of pumped hydro and compressed air energy storage, 90-140 USD/MWh in agreement with other works on this thermal storage technology. The global analysis shows clear advantages for advancing in the study and definition of this technology for exploitation of synergies at different power ranges, integrated with mid/high temperature solar power plants and with smaller-scale renewable installations.Unión Europea. Fondo Europeo de Desarrollo Regional SOE1 / P3 / P0429E

    Stochastic-Risk Based Approach for Microgrid Participation in Joint Active, Reactive, and Ancillary Services Markets Considering Demand Response

    Get PDF
    In the restructured power systems, renewable energy sources (RES) have been developed. Uncertainties of these generators reduce the reliability and stability of power systems. The frequency and voltage for the correct operation of the power systems must always be maintained within a nominal value. Ancillary services (AS), energy storage systems (ESS), and demand response programs (DRPs) can be effective solutions for mentioned problems. Microgrids (MG) can make an improvement in their profits and efficiency by participating in various markets. This paper provides an optimal scheduling for the simultaneous participation of MGs in coupled active, reactive power and AS markets (regulation, spinning reserve and non-spinning reserve) by considering ESS, DRPs, call for deploying AS, and the uncertainties of wind and solar productions. Capability diagrams; mathematical equations are used to model active and reactive power of generation units. Risk management in this paper is done by the conditional value at risk (CVaR) method and probability distribution functions (PDF) are used for modeling uncertainties of wind speed and solar radiation. The ERCOT (Electric Reliability Council of Texas) market is simulated with real world data.©2022 the Authors, published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Towards new renewable energy policies in urban areas : the re-definition of optimum inclination of photovoltaic panels

    Get PDF
    The optimum inclination and orientation of fixed Photovoltaic (PV) panels has long been defined in terms of maximizing the annual electricity yield per capacity installed according to the hemisphere and latitude where the PV system is located. Such optimum setup would thus also maximize the output per system cost, but it would not maximize the output per unit of available area, and it would not necessarily optimize the contribution of photovoltaic electricity vis-Ă -vis overall electricity demand patterns. This study seeks to draw the attention of policy-makers to the fact that incentivizing lower-than-optimum PV panel tilt angles can be an inexpensive strategy to substantially increase the renewable electricity yield in a given area. It also discusses how such strategy can be incorporated into an overall supply/demand grid management and renewable energy integration plan.peer-reviewe

    Energy and land use in the Pamir-Alai Mountains

    Get PDF
    In a comparative study of energy resources and energy consumption patterns in the Pamir-Alai Mountains of Kyrgyzstan and Tajikistan, the relations between energy consumption, land use, and livelihoods were investigated. An approach that presents energy flow through an ecosystem was developed, in particular to highlight ecosystem services and the scope of action for human interventions in the energy-land management nexus. Qualitative data were collected during a field study in October 2009 through household interviews and group discussions. Based on the relationship between energy supply and ecosystem services, typical village profiles depicting the flows of energy and financial assets are presented that illustrate the relation between energy resources, land use, and livelihood assets. The household interviews reflect situations in the different villages and allow a distinction to be made between the energy consumption patterns of poor and wealthier families. This case study in the Pamir-Alai Mountains emphasizes that a reappraisal of energy as a central focus within mountain ecosystems and their services to the population is necessary for both ecosystem preservation and poverty reduction

    Developing a LCA software in Hungary

    Get PDF
    In Hungary the first steps of LCA application can be observed. The objectives of the project are to establish a fundamental online database of LCA compatibility with international software. This database can help designing from the aspect of environment and can be used in education and research. We have classified the domestic power plants on the basis of applied technology and energy sources. But data collection presents some difficulty. Complex analysis of electric- and electronic equipment would be another important scope of the system. And we would like to popularize the LCA application for the small and medium sized enterprises

    Diagramming social practice theory:An interdisciplinary experiment exploring practices as networks

    Get PDF
    Achieving a transition to a low-carbon energy system is now widely recognised as a key challenge facing humanity. To date, the vast majority of research addressing this challenge has been conducted within the disciplines of science, engineering and economics utilising quantitative and modelling techniques. However, there is growing awareness that meeting energy challenges requires fundamentally socio-technical solutions and that the social sciences have an important role to play. This is an interdisciplinary challenge but, to date, there remain very few explorations of, or reflections on, interdisciplinary energy research in practice. This paper seeks to change that by reporting on an interdisciplinary experiment to build new models of energy demand on the basis of cutting-edge social science understandings. The process encouraged the social scientists to communicate their ideas more simply, whilst allowing engineers to think critically about the embedded assumptions in their models in relation to society and social change. To do this, the paper uses a particular set of theoretical approaches to energy use behaviour known collectively as social practice theory (SPT) - and explores the potential of more quantitative forms of network analysis to provide a formal framework by means of which to diagram and visualize practices. The aim of this is to gain insight into the relationships between the elements of a practice, so increasing the ultimate understanding of how practices operate. Graphs of practice networks are populated based on new empirical data drawn from a survey of different types (or variants) of laundry practice. The resulting practice networks are analysed to reveal characteristics of elements and variants of practice, such as which elements could be considered core to the practice, or how elements between variants overlap, or can be shared. This promises insights into energy intensity, flexibility and the rootedness of practices (i.e. how entrenched/ established they are) and so opens up new questions and possibilities for intervention. The novelty of this approach is that it allows practice data to be represented graphically using a quantitative format without being overly reductive. Its usefulness is that it is readily applied to large datasets, provides the capacity to interpret social practices in new ways, and serves to open up potential links with energy modeling. More broadly, a significant dimension of novelty has been the interdisciplinary approach, radically different to that normally seen in energy research. This paper is relevant to a broad audience of social scientists and engineers interested in integrating social practices with energy engineering

    Simulation of Electric Vehicles Combining Structural and Functional Approaches

    Get PDF
    In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.Fil: Silva, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: Magallán, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: de la Barrera, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: de Angelo, Cristian Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: Garcia, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentin
    • …
    corecore