4 research outputs found

    Personalized pancreatic cancer management : a systematic review of how machine learning is supporting decision-making

    Get PDF
    This review critically analyzes how machine learning is being utilized to support clinical decision-making in the management of potentially resectable pancreatic cancer. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, electronic searches of MEDLINE, Embase, PubMed and Cochrane Database were undertaken. Studies were assessed using the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modeling Studies (CHARMS) checklist. In total 89,959 citations were retrieved. Six studies met the inclusion criteria. Three studies were Markov decision-analysis models comparing neoadjuvant therapy versus upfront surgery. Three studies predicted survival time using Bayesian modeling (n = 1), Artificial Neural Network (n = 1), and one study explored machine learning algorithms including: Bayesian Network, decision trees, nearest neighbor, and Artificial Neural Networks. The main methodological issues identified were: limited data sources which limits generalizability and potentiates bias, lack of external validation, and the need for transparency in methods of internal validation, consecutive sampling, and selection of candidate predictors. The future direction of research relies on expanding our view of the multidisciplinary team to include professionals from computing and data science with algorithms developed in conjunction with clinicians and viewed as aids, not replacement, to traditional clinical decision making

    Expert System Development for the Prevention of Hoof Pathologies Applied to the Intensive Swine Production

    Get PDF
    Claw lameness can be associated with biomechanical factors caused by imbalances of the pressure distribution under the hooves when swine are confined in modern facilities with hard concrete flooring. Comparing hoof pressure distribution data of swine boars walking over two different types of floors (standard concrete vs. 3mm rubber mattress) in previous research, it was found a great advantage favoring the rubber mat flooring showing that it was capable of reducing pressures under the claws as the pressure became more evenly distributed under this treatment resulting in balanced weight-bearing surfaces. The objective of this study was to develop an expert system based on Fuzzy logic algorithm for the prevention of hoof pathologies applied to the intensive swine production by estimating occurrence of claw lesions based on the association of knowledge gathered on pressure distribution from previous research as well as the influences of nutrition, friction coefficients found on different types of available flooring, hoof sizes and animal weight on the welfare of the swine’s locomotory system. The data were correlated initially using Matlab® platform associating expert’s knowledge and literature through a knowledge system that weights the variables according to their impact on claw health. The final user interface was coded using Microsoft Visual Studio Rapid Application Development tool and the resulting system was validated in several different laboratory scenarios and its performance was considered to be satisfactory according to findings in the literature. The expert system was coded and the authors concluded that the system could be a great contribution and advance in the swine’s industry, nonetheless, its performance still requires field testing for fine adjustments which should be encouraged to be carried out in further researches

    Optimising outcomes for potentially resectable pancreatic cancer through personalised predictive medicine : the application of complexity theory to probabilistic statistical modeling

    Get PDF
    Survival outcomes for pancreatic cancer remain poor. Surgical resection with adjuvant therapy is the only potentially curative treatment, but for many people surgery is of limited benefit. Neoadjuvant therapy has emerged as an alternative treatment pathway however the evidence base surrounding the treatment of potentially resectable pancreatic cancer is highly heterogeneous and fraught with uncertainty and controversy. This research seeks to engage with conjunctive theorising by avoiding simplification and abstraction to draw on different kinds of data from multiple sources to move research towards a theory that can build a rich picture of pancreatic cancer management pathways as a complex system. The overall aim is to move research towards personalised realistic medicine by using personalised predictive modeling to facilitate better decision making to achieve the optimisation of outcomes. This research is theory driven and empirically focused from a complexity perspective. Combining operational and healthcare research methodology, and drawing on influences from complementary paradigms of critical realism and systems theory, then enhancing their impact by using Cilliers’ complexity theory ‘lean ontology’, an open-world ontology is held and both epistemic reality and judgmental relativity are accepted. The use of imperfect data within statistical simulation models is explored to attempt to expand our capabilities for handling the emergent and uncertainty and to find other ways of relating to complexity within the field of pancreatic cancer research. Markov and discrete-event simulation modelling uncovered new insights and added a further dimension to the current debate by demonstrating that superior treatment pathway selection depended on individual patient and tumour factors. A Bayesian Belief Network was developed that modelled the dynamic nature of this complex system to make personalised prognostic predictions across competing treatments pathways throughout the patient journey to facilitate better shared clinical decision making with an accuracy exceeding existing predictive models.Survival outcomes for pancreatic cancer remain poor. Surgical resection with adjuvant therapy is the only potentially curative treatment, but for many people surgery is of limited benefit. Neoadjuvant therapy has emerged as an alternative treatment pathway however the evidence base surrounding the treatment of potentially resectable pancreatic cancer is highly heterogeneous and fraught with uncertainty and controversy. This research seeks to engage with conjunctive theorising by avoiding simplification and abstraction to draw on different kinds of data from multiple sources to move research towards a theory that can build a rich picture of pancreatic cancer management pathways as a complex system. The overall aim is to move research towards personalised realistic medicine by using personalised predictive modeling to facilitate better decision making to achieve the optimisation of outcomes. This research is theory driven and empirically focused from a complexity perspective. Combining operational and healthcare research methodology, and drawing on influences from complementary paradigms of critical realism and systems theory, then enhancing their impact by using Cilliers’ complexity theory ‘lean ontology’, an open-world ontology is held and both epistemic reality and judgmental relativity are accepted. The use of imperfect data within statistical simulation models is explored to attempt to expand our capabilities for handling the emergent and uncertainty and to find other ways of relating to complexity within the field of pancreatic cancer research. Markov and discrete-event simulation modelling uncovered new insights and added a further dimension to the current debate by demonstrating that superior treatment pathway selection depended on individual patient and tumour factors. A Bayesian Belief Network was developed that modelled the dynamic nature of this complex system to make personalised prognostic predictions across competing treatments pathways throughout the patient journey to facilitate better shared clinical decision making with an accuracy exceeding existing predictive models
    corecore