1,095 research outputs found

    Mining brain imaging and genetics data via structured sparse learning

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual loss of brain functions, usually preceded by memory impairments. It has been widely affecting aging Americans over 65 old and listed as 6th leading cause of death. More importantly, unlike other diseases, loss of brain function in AD progression usually leads to the significant decline in self-care abilities. And this will undoubtedly exert a lot of pressure on family members, friends, communities and the whole society due to the time-consuming daily care and high health care expenditures. In the past decade, while deaths attributed to the number one cause, heart disease, has decreased 16 percent, deaths attributed to AD has increased 68 percent. And all of these situations will continue to deteriorate as the population ages during the next several decades. To prevent such health care crisis, substantial efforts have been made to help cure, slow or stop the progression of the disease. The massive data generated through these efforts, like multimodal neuroimaging scans as well as next generation sequences, provides unprecedented opportunities for researchers to look into the deep side of the disease, with more confidence and precision. While plenty of efforts have been made to pull in those existing machine learning and statistical models, the correlated structure and high dimensionality of imaging and genetics data are generally ignored or avoided through targeted analysis. Therefore their performances on imaging genetics study are quite limited and still have plenty to be improved. The primary contribution of this work lies in the development of novel prior knowledge-guided regression and association models, and their applications in various neurobiological problems, such as identification of cognitive performance related imaging biomarkers and imaging genetics associations. In summary, this work has achieved the following research goals: (1) Explore the multimodal imaging biomarkers toward various cognitive functions using group-guided learning algorithms, (2) Development and application of novel network structure guided sparse regression model, (3) Development and application of novel network structure guided sparse multivariate association model, and (4) Promotion of the computation efficiency through parallelization strategies

    Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials

    Get PDF
    INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS: We used standard searches to find publications using ADNI data. RESULTS: (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION: Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial desig

    PARALLEL INDEPENDENT COMPONENT ANALYSIS WITH REFERENCE FOR IMAGING GENETICS: A SEMI-BLIND MULTIVARIATE APPROACH

    Get PDF
    Imaging genetics is an emerging field dedicated to the study of genetic underpinnings of brain structure and function. Over the last decade, brain imaging techniques such as magnetic resonance imaging (MRI) have been increasingly applied to measure morphometry, task-based function and connectivity in living brains. Meanwhile, high-throughput genotyping employing genome-wide techniques has made it feasible to sample the entire genome of a substantial number of individuals. While there is growing interest in image-wide and genome-wide approaches which allow unbiased searches over a large range of variants, one of the most challenging problems is the correction for the huge number of statistical tests used in univariate models. In contrast, a reference-guided multivariate approach shows specific advantage for simultaneously assessing many variables for aggregate effects while leveraging prior information. It can improve the robustness of the results compared to a fully blind approach. In this dissertation we present a semi-blind multivariate approach, parallel independent component analysis with reference (pICA-R), to better reveal relationships between hidden factors of particular attributes. First, a consistency-based order estimation approach is introduced to advance the application of ICA to genotype data. The pICA-R approach is then presented, where independent components are extracted from two modalities in parallel and inter-modality associations are subsequently optimized for pairs of components. In particular, prior information is incorporated to elicit components of particular interests, which helps identify factors carrying small amounts of variance in large complex datasets. The pICA-R approach is further extended to accommodate multiple references whose interrelationships are unknown, allowing the investigation of functional influence on neurobiological traits of potentially related genetic variants implicated in biology. Applied to a schizophrenia study, pICA-R reveals that a complex genetic factor involving multiple pathways underlies schizophrenia-related gray matter deficits in prefrontal and temporal regions. The extended multi-reference approach, when employed to study alcohol dependence, delineates a complex genetic architecture, where the CREB-BDNF pathway plays a key role in the genetic factor underlying a proportion of variation in cue-elicited brain activations, which plays a role in phenotypic symptoms of alcohol dependence. In summary, our work makes several important contributions to advance the application of ICA to imaging genetics studies, which holds the promise to improve our understating of genetics underlying brain structure and function in healthy and disease

    Interpretable Machine Learning and Deep Learning Frameworks for Predictive Analytics and Biomarker Discovery from Multimodal Imaging Genetics Data

    Get PDF
    In healthcare, neuroimaging studies and genetics research are generating torrents of data to understand the hereditary components of neurological and psychiatric disorders. Neuroimaging techniques like functional Magnetic Resonance Imaging probe into the neural functioning of the disorder. In parallel, genome sequencing technologies explore the genetic underpinning. Integrating these complementary viewpoints in a single framework improves diagnosis and provides biological insights about the disorders. However, imaging-genetic data lies in a high-dimensional space with complex interaction and unknown causal factors. Our research aims to integrate multimodal imaging-genetics data to predict neuropsychiatric disorders while providing biological insights. We first propose a novel generative-discriminative framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative module extracts representation patterns from the data, while the discriminative module uses the representation vectors for diagnosis. Our experimental analyses show that the discriminative module guides our framework, leading to improved disease diagnosis and biomarker identification. Next, we extend the linear multivariate approach to capture the complex non-linear interaction between the data modalities using an autoencoder framework coupled with a classifier. Unlike traditional encoder-decoder models, our encoder module jointly identifies predictive imaging and genetic biomarkers using Bayesian feature selection. Our third work uses the Bayesian approach to find genetic variants that causally affect a trait. However, correct identification of the causal variants is challenging due to the correlation structure shared across variants. Our model combines a hierarchical Bayesian model with a deep learning-based inference procedure. We show that this combination provides greater inferential power to handle noise and spurious interactions of the genomic region. Finally, we solve the problem of encoding whole genome genotype data in an imaging-genetics framework. Traditionally, imaging-genetics models sub-select genetic features to ensure model stability. Our approach departs from conventional Artificial Neural Networks and introduces biologically regularized graph convolution networks to encode the whole genome genotype data. We show that this encoding strategy helps us to track the convergence of genetic risk while preventing overfitting. In an exploratory analysis, we use this model to investigate the underlying biological processes associated with autism spectrum disorder and schizophrenia

    EXplainable Artificial Intelligence: enabling AI in neurosciences and beyond

    Get PDF
    The adoption of AI models in medicine and neurosciences has the potential to play a significant role not only in bringing scientific advancements but also in clinical decision-making. However, concerns mounts due to the eventual biases AI could have which could result in far-reaching consequences particularly in a critical field like biomedicine. It is challenging to achieve usable intelligence because not only it is fundamental to learn from prior data, extract knowledge and guarantee generalization capabilities, but also to disentangle the underlying explanatory factors in order to deeply understand the variables leading to the final decisions. There hence has been a call for approaches to open the AI `black box' to increase trust and reliability on the decision-making capabilities of AI algorithms. Such approaches are commonly referred to as XAI and are starting to be applied in medical fields even if not yet fully exploited. With this thesis we aim at contributing to enabling the use of AI in medicine and neurosciences by taking two fundamental steps: (i) practically pervade AI models with XAI (ii) Strongly validate XAI models. The first step was achieved on one hand by focusing on XAI taxonomy and proposing some guidelines specific for the AI and XAI applications in the neuroscience domain. On the other hand, we faced concrete issues proposing XAI solutions to decode the brain modulations in neurodegeneration relying on the morphological, microstructural and functional changes occurring at different disease stages as well as their connections with the genotype substrate. The second step was as well achieved by firstly defining four attributes related to XAI validation, namely stability, consistency, understandability and plausibility. Each attribute refers to a different aspect of XAI ranging from the assessment of explanations stability across different XAI methods, or highly collinear inputs, to the alignment of the obtained explanations with the state-of-the-art literature. We then proposed different validation techniques aiming at practically fulfilling such requirements. With this thesis, we contributed to the advancement of the research into XAI aiming at increasing awareness and critical use of AI methods opening the way to real-life applications enabling the development of personalized medicine and treatment by taking a data-driven and objective approach to healthcare

    Mining high-level brain imaging genetic associations

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Imaging genetics is an emerging research field in neurodegenerative diseases. It studies the influence of genetic variants on brain structure and function. Genome-wide association studies (GWAS) of brain imaging has identified a few independent risk loci for individual imaging quantitative trait (iQT), which however display only modest effect size and explain limited heritability. This thesis focuses on mining high-level imaging genetic associations and their applications on neurodegenerative diseases. This thesis first presents a novel network-based GWAS framework for identifying functional modules, by employing a two-step strategy in a top-down manner. It first integrates tissue-specific network with GWAS of corresponding phenotype in regression models in addition to classification, to re-prioritize genome-wide associations. Then it detects densely connected and disease-relevant modules based on interactions among top reprioritizations. The discovered modules hold both phenotypical specificity and densely interaction. We applied it to an amygdala imaging genetics analysis in the study of Alzheimer's disease (AD). The proposed framework effectively detects densely interacted modules; and the reprioritizations achieve highest concordance with AD genes. We then present an extension of the above framework, named GWAS top-neighbor-based (tnGWAS); and compare it with previous approaches. This tnGWAS extracts densely connected modules from top GWAS findings, based on the hypothesis that relevant modules consist of top GWAS findings and their close neighbors. It is applied to a hippocampus imaging genetics analysis in AD research, and yields the densest interactions among top candidate genes. Experimental results demonstrate that precise context does help explore collective effects of genes with functional interactions specific to the studied phenotype. In the second part, a novel imaging genetic enrichment analysis (IGEA) paradigm is proposed for discovering complex associations among genetic modules and brain circuits. In addition to genetic modules, brain regions of interest also grouped to play role. We expand the scope of one-dimensional enrichment analysis into imaging genetics. This framework jointly considers meaningful gene sets (GS) and brain circuits (BC), and examines whether given GS-BC module is enriched in gene-iQT findings. We conduct the proof-of-concept study and demonstrate its performance by applying to a brain-wide imaging genetics study of AD

    Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers

    Full text link
    Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., theranostic biomarker) is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce recent approach for creating a theranostic biomarker, which consists mainly of two parts: (i) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (ii) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use.Comment: 46 pages, 5 figure

    An overview of data integration in neuroscience with focus on Alzheimer's Disease

    Get PDF
    : This work represents the first attempt to provide an overview of how to face data integration as the result of a dialogue between neuroscientists and computer scientists. Indeed, data integration is fundamental for studying complex multifactorial diseases, such as the neurodegenerative diseases. This work aims at warning the readers of common pitfalls and critical issues in both medical and data science fields. In this context, we define a road map for data scientists when they first approach the issue of data integration in the biomedical domain, highlighting the challenges that inevitably emerge when dealing with heterogeneous, large-scale and noisy data and proposing possible solutions. Here, we discuss data collection and statistical analysis usually seen as parallel and independent processes, as cross-disciplinary activities. Finally, we provide an exemplary application of data integration to address Alzheimer's Disease (AD), which is the most common multifactorial form of dementia worldwide. We critically discuss the largest and most widely used datasets in AD, and demonstrate how the emergence of machine learning and deep learning methods has had a significant impact on disease's knowledge particularly in the perspective of an early AD diagnosis

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research
    corecore