122 research outputs found

    Design of Hand Motion Assist Robot for Rehabilitation Physiotherapy

    Get PDF
    This paper deals about developing a microcontroller based two-axis robot for human hand physiotherapy for the treatment of paralyzed patients. The interactive two-axis motion robot is designed to fit around patient’s arm and work with the patient to reestablish movements of hand by gently moving it in desired direction. The robot moves the patients hand up and down, left and right using servo motor interfaced with it. The motor is controlled by switching ON/OFF the stator winding. The microcontroller generates the switching pulses of the motor; the angular distance and movements are programmable through keys. The robot actively moves the non-responsive body parts allowing it to be a useful tool in all steps of rehabilitation. Note to Practitioners-Compared with cable-driven humanoid arm, a cable less robot is more accurate because a cable driven robot has some drawbacks due to the mismatch of connections. If the connections are mishandled, there is a chance to occur any severe damages. The main drawback is more expensive, very difficult to maintain and clean. This drawback can be rectified by the proposed method. The main feature of this robot is its mobility function

    A 3-DoF robotic platform for the rehabilitation and assessment of reaction time and balance skills of MS patients

    Get PDF
    The central nervous system (CNS) exploits anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain the balance. The postural adjustments comprising stability of the center of mass (CoM) and the pressure distribution of the body influence each other if there is a lack of performance in either of them. Any predictable or sudden perturbation may pave the way for the divergence of CoM from equilibrium and inhomogeneous pressure distribution of the body. Such a situation is often observed in the daily lives of Multiple Sclerosis (MS) patients due to their poor APAs and CPAs and induces their falls. The way of minimizing the risk of falls in neurological patients is by utilizing perturbation-based rehabilitation, as it is efficient in the recovery of the balance disorder. In light of the findings, we present the design, implementation, and experimental evaluation of a novel 3 DoF parallel manipulator to treat the balance disorder of MS. The robotic platform allows angular motion of the ankle based on its anthropomorphic freedom. Moreover, the end-effector endowed with upper and lower platforms is designed to evaluate both the pressure distribution of each foot and the CoM of the body, respectively. Data gathered from the platforms are utilized to both evaluate the performance of the patients and used in high-level control of the robotic platform to regulate the difficulty level of tasks. In this study, kinematic and dynamic analyses of the robot are derived and validated in the simulation environment. Low-level control of the first prototype is also successfully implemented through the PID controller. The capacity of each platform is evaluated with a set of experiments considering the assessment of pressure distribution and CoM of the foot-like objects on the end-effector. The experimental results indicate that such a system well-address the need for balance skill training and assessment through the APAs and CPAs

    The use of a robotic device for upper limb retraining in subacute stroke

    Get PDF
    Stroke is a significant cause of disability in the population. When the arm is affected by stroke, functional recovery may be poor. The use of robotic aids to enhance arm recovery is a novel treatment adjunct. There is a growing support for using robots as an adjunct to therapy but there has been little translation from research into clinical use. The investigations reported in this thesis aimed to bridge the gap between research and clinical use of these devices. To achieve this,five stages were carried out: Firstly a systematic literature review of outcomes measure used for the upper limb was conducted.to establish the most reliable, valid and responsive scales. This review found a battery of measures (ABILHAND, CHAI, STREAM, FMA, ARAT, EQ5D, DASH, NIHSS). An evaluation of 125 consecutive acute stroke patients established the proportion of patients that potentially benefited from rehabilitation using a robotic device. This found that around 50% of subjects could use a robotic aid and that it was practically feasible to carry out the intervention. A pilot RCT performed on 37 participants using the battery of measures found a significant difference with use of the robotic device on the ABILHAND, This was not seen with the other measures, however there was a trend towards improvement in motor performance and function in the robotic group. In depth interviews with participants found subjects perceived gains with using the robot but fatigue stopped them using it for longer periods. Psychometric analysis of the outcome measures used found difficulties with the instruments in reflecting clinically change. The studies showed that a robotic device could be used practically; however stratifying subjects into arm severity would help provide further information over who could benefit from the intervention. Identifying appropriate ways of measuring changes that are clinically meaningful would also be beneficial

    Cerebral Palsy

    Get PDF
    Nowadays, cerebral palsy (CP) rehabilitation, along with medical and surgical interventions in children with CP, leads to better motor and postural control and can ensure ambulation and functional independence. In achieving these improvements, many modern practices may be used, such as comprehensive multidisciplinary assessment, clinical decision making, multilevel surgery, botulinum toxin applications, robotic ambulation applications, treadmill, and other walking aids to increase the quality and endurance of walking. Trainings are based on neurodevelopmental therapy, muscle training and strength applications, adaptive equipment and orthotics, communication, technological solves, and many others beyond the scope of this book. In the years of clinical and academic experiences, children with cerebral palsy have shown us that the world needs a book to give clinical knowledge to health professionals regarding these important issue. This book is an attempt to fulfill and to give “current steps” about CP. The book is intended for use by physicians, therapists, and allied health professionals who treat/rehabilitate children with CP. We focus on the recent concepts in the treatment of body and structure problems and describe the associated disability, providing suggestions for further reading. All authors presented the most frequently used and accepted treatment methods with scientifically proven efficacy and included references at the end of each chapter

    Bioinspired robotic rehabilitation tool for lower limb motor learning after stroke

    Get PDF
    Mención Internacional en el título de doctorEsta tesis doctoral presenta, tras repasar la marcha humana, las principales patologíıas y condiciones que la afectan, y los distintos enfoques de rehabilitación con la correspondiente implicación neurofisiológica, el camino de investigación que desemboca en la herramienta robótica de rehabilitación y las terapias que se han desarrollado en el marco de los proyectos europeos BioMot: Smart Wearable Robots with Bioinspired Sensory-Motor Skills y HANK: European advanced exoskeleton for rehabilitation of Acquired Brain Damage (ABD) and/or spinal cord injury’s patients, y probado bajo el paraguas del proyecto europeo ASTONISH: Advancing Smart Optical Imaging and Sensing for Health y el proyecto nacional ASSOCIATE: A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury.This doctoral thesis presents, after reviewing human gait, the main pathologies and conditions that affect it, and the different rehabilitation approaches with the corresponding neurophysiological implications, the research journey that leads to the development of the rehabilitation robotic tool, and the therapies that have been designed, within the framework of the European projects BioMot: Smart Wearable Robots with Bioinspired Sensory-Motor Skills and HANK: European advanced exoskeleton for rehabilitation of Acquired Brain Damage (ABD) and/or spinal cord injury’s patients and tested under the umbrella of the European project ASTONISH: Advancing Smart Optical Imaging and Sensing for Health and the national project ASSOCIATE: A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury.This work has been carried out at the Neural Rehabilitation Group (NRG), Cajal Institute, Spanish National Research Council (CSIC). The research presented in this thesis has been funded by the Commission of the European Union under the BioMot project - Smart Wearable Robots with Bioinspired Sensory-Motor Skills (Grant Agreement number IFP7-ICT - 611695); under HANK Project - European advanced exoskeleton for rehabilitation of Acquired Brain Damage (ABD) and/or spinal cord injury’s patients (Grant Agreements number H2020-EU.2. - PRIORITY ’Industrial leadership’ and H2020-EU.3. - PRIORITY ’Societal challenges’ - 699796); also under the ASTONISH Project - Advancing Smart Optical Imaging and Sensing for Health (Grant Agreement number H2020-EU.2.1.1.7. - ECSEL - 692470); with financial support of Spanish Ministry of Economy and Competitiveness (MINECO) under the ASSOCIATE project - A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury (Grant Agreement number 799158449-58449-45-514); and with grant RYC-2014-16613, also by Spanish Ministry of Economy and Competitiveness.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fernando Javier Brunetti Fernández.- Secretario: Dorin Sabin Copaci.- Vocal: Antonio Olivier

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects
    • …
    corecore