2,628 research outputs found

    Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis

    Full text link
    Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved by 10% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.Comment: 20 pages, 3 figure

    Detecting Slow Wave Sleep Using a Single EEG Signal Channel

    Get PDF
    Background: In addition to the cost and complexity of processing multiple signal channels, manual sleep staging is also tedious, time consuming, and error-prone. The aim of this paper is to propose an automatic slow wave sleep (SWS) detection method that uses only one channel of the electroencephalography (EEG) signal. New Method: The proposed approach distinguishes itself from previous automatic sleep staging methods by using three specially designed feature groups. The first feature group characterizes the waveform pattern of the EEG signal. The remaining two feature groups are developed to resolve the difficulties caused by interpersonal EEG signal differences. Results and comparison with existing methods: The proposed approach was tested with 1,003 subjects, and the SWS detection results show kappa coefficient at 0.66, an accuracy level of 0.973, a sensitivity score of 0.644 and a positive predictive value of 0.709. By excluding sleep apnea patients and persons whose age is older than 55, the SWS detection results improved to kappa coefficient, 0.76; accuracy, 0.963; sensitivity, 0.758; and positive predictive value, 0.812. Conclusions: With newly developed signal features, this study proposed and tested a single-channel EEG-based SWS detection method. The effectiveness of the proposed approach was demonstrated by applying it to detect the SWS of 1003 subjects. Our test results show that a low SWS ratio and sleep apnea can degrade the performance of SWS detection. The results also show that a large and accurately staged sleep dataset is of great importance when developing automatic sleep staging methods

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm

    Automatic sleep staging of EEG signals: recent development, challenges, and future directions.

    Get PDF
    Modern deep learning holds a great potential to transform clinical studies of human sleep. Teaching a machine to carry out routine tasks would be a tremendous reduction in workload for clinicians. Sleep staging, a fundamental step in sleep practice, is a suitable task for this and will be the focus in this article. Recently, automatic sleep-staging systems have been trained to mimic manual scoring, leading to similar performance to human sleep experts, at least on scoring of healthy subjects. Despite tremendous progress, we have not seen automatic sleep scoring adopted widely in clinical environments. This review aims to provide the shared view of the authors on the most recent state-of-the-art developments in automatic sleep staging, the challenges that still need to be addressed, and the future directions needed for automatic sleep scoring to achieve clinical value
    corecore