4,532 research outputs found

    Proceedings, MSVSCC 2013

    Get PDF
    Proceedings of the 7th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 11, 2013 at VMASC in Suffolk, Virginia

    Development of Blast Risk Assessment Framework for Financial Loss and Casualty Estimation

    Get PDF
    The entire study can be divided into four main studies. Study I presents the development of probabilistic version of popular Kingery and Bulmash (KB) blast model. The probabilistic model was developed by considering the uncertainty in the model quantified using available experimental data. The model was then applied to generate fragility curves are developed for three types of glazing under three common bombing scenarios and study 1995 Oklahoma City damage. Study II discusses on development a blast loss estimation framework for buildings where demand loads are calculated using the probabilistic blast model and capacity form seismic design. Loss for archetypes buildings designed with three levels of seismic design category were estimated using the loss estimation framework. The objective was to see if there is potential benefit in terms of monetary value for three design categories. The results showed that as design level increased from ordinary, intermediate to special moment frame the blast performance was improved for some blast scenarios. In Study III concept of protection zones is presented which are zones in building with varying level of security, has been introduced based on the principle - as security increases the probable size of bomb should decrease. Probable bombs are uniformly placed at each protection zone to create many possible scenarios of terrorism event. The Brussels’ Airport attack of 2016 is studied using this framework and loss values are obtained to understand the associated risk. The results showed that the actual attack could have been worse. Strategies for improving security are employed in protection zones and its influence on threat reduction is studied. Study IV is about development of a probabilistic injury model to estimate the consequence of blast injuries to people. The blast parameters (pressure and impulse) are calculated using Kingery and Bulmash blast model. Monte Carlo simulation is used to randomly distribute people on each floor and estimate injury states for each blast scenario due to primary and secondary effects blast. An agent-based model (ABM) was developed to track movement of people in case of multiple blast scenario. The model was used to study three case studies – Brussels’ Airport bombing, Manchester Arena’s Bombing and Oklahoma City Bombing

    Dinamičko mehanička svojstva hibridnih nanokompozitnih materijala

    Get PDF
    Predmet istraživanja ove doktorske disertacije pripada oblasti nanomateijala i nanotehnogija koja je u trendu savremenih istraživanja. Posebno su intenzivna istraživanja u oblasti polimernih nanokompozita gde tradicionalno slabe strane polimera (niske vrednosti parametara mehaničke čvrstoće i loša termostabilnost) se značajno poboljšavaju primenom malog udela nano punioca i ojačanja uz neznatan porast gustine. Razvijena je metoda dizajniranja strukture nanokompozitnih balističkih materijala sa gledišta poboljšanja njihovih svojstava otpornosti pri udarima visoke energije. Proučeni su uslovi dobijanja laminarnih kompozitnih materijala p-aramid/poli (vinil butiral). Poli (vinil butiralni) sloj nanošen je u obliku disperzije poli (vinil butirala) i nano čestica SiOR2R u etil-alkoholu, pri čemu su korišćene modifikovane i nemodifikovane čestice SiOR2 Rsa vezujućim agensom-AMEO silanom. Na taj nači je utvrđen veliki značaj modifikacije nano čestica SiOR2R sa silanima na mehanička, termička i antibalistička svojstva dobijenih hibridnih nanokompozitnih materijala. Savremena istraživanja u ovoj oblasti usmerena su u pronalaženju mehanizama zaustavljanja rasta prsline modifikovanjem strukture na nano nivou što je i predmet ove doktorske disertacije. Proučavanja u okviru ove disertacije bila su usmerena na istraživanja mehanizama apsorpcije energije u nanokompozitima pri udarnim opterećenjima visoke energije i ponašanje nano čestica kao konstituenata u strukturi hibridnih kompozitnih materijala. Sinteza ovih nanokompozitnih materijala izvršiće se primenom koloidnih suspenzija koje se karakterišu ekstremnim porastom viskoznosti pri velikim brzinama smicanja kojima su izloženi pri udarnim naprezanjima. Originalnost ideje se ogleda što je princip hibridizacije primenjen na izradu laminatnih balističkih ploča sa laminama koje su različito nanomodifikovane a samim tim i sa različitim svojstvima. Značaj ove ideje je što različito nanomodifikovane lamine omogućavaju izradu funkcionalno gradijentnih kompozitnih materijla od nano do mikro nivoa. Ciljevi ove disertacije su višestruki: 1) proučavanje mehanizama procesiranja nano prahova različitih oksida u različitim disperzionim sredstvima prema klasičnim metodama i savremenim metodama modifikovanja površine čestica; 2) eksperimentalna istraživanje uticaja procesnih uslova brizganja i toplog presovanja hibridnih nonokompozita sa tkaninama od aramidnih vlakana sa različitim udelom modifikovanih nanočestica na njihova dinamickomehanička svojstva (modul sačuvane i izgubljene energije i tangens gubitaka) u različitom temperaturnom intervalu pri različitim frekvencijama); 3) eksperimentalna istraživanje uticaja procesnih uslova brizganja i toplog presovanja hibridnih laminatnih nonokompozita sa matricom od poli (vinil butirala) sa razlicitim udelom modifikovanih cestica silicijum dioksida na makromehanicka svojstva (Jungov modul elasticnosti, zatezna cvrstoca, prekidno izduženje); 4) eksperimentalna ispitivanja otpornosti na razaranje dobijenih hibridnih nanokompozitnih materijala na udar velikim energijama i brzinama (standardna balisticka ispitivanja sa municijom u realnim uslovima).The purpose of this dissertation is to investigate the effects of lamination and hybrid soft armor systems through ballistic impact. The investigation was carried out by using dynamic mechanical analysis and actual ballistic testing. The most important conclusions derived from this research are that lamination of the systems with very low resin content are superior to multiple non-laminated systems, and this advance could be improved further by hybrid systems using nanomodified fabric layers on the impact side and relatively tighter woven fabrics between the layers. This dissertation reports the preparation of SiOR2R and TiOR2R/poly (vinyl butyral) nanocomposites with enhanced dynamic mechanical properties. Silica and titania nanoparticles were introduced in the matrix as the neat powder and as colloidal sol using the melt mixing process. Composites reinforced with colloidal sol silica and titania showed higher mechanical properties than the ones reinforced with as-received particles. When sol TiOR2R particles are used, the highest increase of storage modulus of about 54% is obtained for 5 wt% loading, while for sol SiOR2R, the storage modulus increases with the addition of nanosilica with the largest increase of about 99% for 7 wt% loading. In addition, nanocomposites were introduced within Kevlar/PVB composites. The addition of 5 wt% silica and titania colloidal sol lead to the remarkable increase of the storage modulus for about 98 and 65%, respectively. Largest contribution of nanoreinforcements in lowering the glass transition temperature is observed for 7 wt% loading of TiOR2R and SiOR2R colloidal sol. This study reports the manufacture of new fabric forms from the preparation of hybrid laminated multi-axial composites with enhanced thermo-mechanical properties. Thermal and dynamic mechanical analysis of polymer matrix films and fabricated hybrid composites were employed in order to determine the optimal material composition and reinforcement content for composites with improved viscoelastic properties. The introduction of 5 wt. % silica nanoparticles in a composite of p-aramid– poly(vinyl butyral) led to significant improvements in the mechanical properties, and the addition of silane coupling agents yielded maximal values of the storage modulus for hybrid nanocomposites. The introduction of silane led to a better dispersion and deagglomeration of SiOR2R particles and to the formation of chemical bonds between organic and inorganic constituents, or p-aramid–poly(vinyl butyral) composites. In this way, the mobility of macromolecules was reduced, which can be seen from the decreasing value of damping factor for the p-aramid–poly(vinyl butyral) composite. Analysis of the glass transition temperature of the composite with amino-functionalized silica nanoparticles revealed improved thermal stability in addition to the aforementioned mechanical properties of the tested materials

    Fixed-wing Aircraft Combat Survivability Analysis for Operation Enduring Freedom and Operation Iraqi Freedom

    Get PDF
    The primary tenet of the aircraft survivability discipline is threat definition. In order to deliver relevant capabilities and protection to the warfighter it is imperative; therefore, to provide timely, accurate, and actionable threat data to the survivability community. In an attempt to identify the evolution of aircraft threats in today\u27s combat environment, an analysis of fixed-wing aircraft battle damage was conducted. This analysis reports battle damage incidents from OPERATIONS ENDURING FREEDOM (OEF) and IRAQI FREEDOM(OIF). Additionally, reported damage incidents were then validated by crosschecking aircraft maintenance records from this period to eliminate non-hostile fire data points. This revolutionary approach uncovered discontinuities, which were further explored to identify their root cause. As a result, significant Air Force policy changes in the realm of battle damage reporting procedures were suggested. In the end, lives will be saved because the acquisition community at large will have valuable threat data in which they can be confident

    Issues in Modeling Military Space

    Get PDF
    Fighter Pilots students undertake an intense 120-day training program. New classes of students enter the training program at regular interval. Students endured rigorous academic, simulator, and aircraft training throughout the program. Squadron schedulers ensure the multiple classes and students are scheduled for the activities. Simulator and aircraft training are scheduled individual for each student. Academic training are taught to the class. Aircraft utilization must also be considered. Aircraft Sortie training are also constrained by daylight hours. Additionally, students are limited to a maximum of three training events in a given day. Squadron schedulers must balance these requirements to ensure students meet their training requirements and successfully graduate. The dynamic training environment requires advanced robust schedules with flexibility to accommodate changes. A Visual Interactive Modeling approach is used to generate schedules. Current schedules are being generated manually with an Excel spreadsheet. Taking advantage of Excel\u27s Visual Basic Programming language, the Excel tool is modified in several ways. Scheduling Dispatch rules are implemented to automatically generate feasible schedules. Graphical User Interfaces are used to create a user-friendly environment. Schedulers guide the schedule building process to produce a robust schedule. An attrition environment is created to simulate attrition probabilities of aircraft sortie training due to operations, maintenance, weather, and other cancellations. Analysis of dispatch rules are analyzed

    How Do We Get Rid of These Things? Dismantling Excess Weapons While Protecting the Environment

    Get PDF
    The startling successes of contemporary international arms control negotiations call to mind the old aphorism that one should be careful about what one wishes for, because the wish just might come true. Today, disarmament diplomacy has wrought unprecedented triumphs across a wide range of global bargaining issues, producing a series of watershed treaties that offer spectacular new advantages for the security of the United States and for the prospect of enduring world peace. At the same time, however, these unanticipated negotiation breakthroughs have themselves generated unforeseen implementation problems, spawning a host of novel difficulties for which the traditional tools and methods of arms control are ill-prepared or inappropriate. This Article examines one such difficulty: the potential legal and political conflict posed when a dramatic and crucial new arms control agreement, the 1993 Chemical Weapons Convention (CWC), confronts the equally fundamental and pressing dictates of national environmental protection policy. In short, the CWC will mandate the peaceful dismantling of massive national arsenals of now obsolete, but still exceptionally lethal chemical weapons (CW) agents, armaments, and facilities-and the destruction must be accomplished relatively promptly, reliably, and under the supervision of international inspectors. In the United States, however, long-standing environmental legislation, starting with the National Environmental Policy Act of 1969 (NEPA) and continuing through a sequence of resource-specific antipollution enactments, mandates punctilious adherence to procedural safeguards (such as the preparation of disclosive Environmental Impact Statements) and compliance with stringent national and local substantive standards on emissions, hazardous wastes, community participation, and safety

    Department of Defense Dictionary of Military and Associated Terms

    Get PDF
    The Joint Publication 1-02, Department of Defense Dictionary of Military and Associated Terms sets forth standard US military and associated terminology to encompass the joint activity of the Armed Forces of the United States. These military and associated terms, together with their definitions, constitute approved Department of Defense (DOD) terminology for general use by all DOD components

    The optimisation of flexible impact-protection systems for varying strain rates and energies.

    Get PDF
    The need for smarter and active, energy absorbing systems designed especially for human protection applications has sparked interest in highly strain rate sensitive compounds. This thesis describes the iterative design, development and optimisation of a novel form of energy absorbing, body worn protection. The original contribution to knowledge is the development of a novel strain rate sensitive protection system incorporating synergetic internal architecture. Co-continuous blends of silicone based dilatant and thermoplastic elastomer have been developed through a recursive design process to develop a new material specifically optimised for body worn protection. Failure mechanisms were analysed, and from these results techniques have been developed to mitigate internal fracture mechanisms. This enabled the development of a strain rate sensitive material utilised with an internal architecture. The novel material properties were examined and developed using monolithic samples, tested at a variety of energies, speed and environmental conditions. Methods for designing and developing auxetic structures that work synergistically with the new material have been developed. The novel system has also been combined with textiles, and the merit of this combination explored. An improvement in performance has been validated, as well as a design improvement through being able to attach parts directly to garments. The resulting impact protectors are applicable over a range of strain rates. Systems have been designed to incorporate this novel technology in pre-production prototypes in three selected market areas, which typify low, medium and high impact speeds. The work also explores the systems ability to manage multiple impacts at the same location with a surprisingly low loss in performance, effectively making a protector that can withstand repeat impacts. This work has contributed to the methods previously used in testing personal protective equipment. The techniques developed in this work have enabled new revision of these PPE standards, as well as directly contributing to two new standards.Open Acces

    Astrophysical Ionizing Radiation and the Earth: A Brief Review and Census of Intermittent Intense Sources

    Full text link
    Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere: on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. We enumerate the known sources of radiation and characterize their intensities at the Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval", our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note for the first time that so-called "short-hard" gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Given their precursors, short bursts may come with little or no warning.Comment: to be published in Astrobiolog
    corecore