2 research outputs found

    Development of an ENVISAT altimetry processor providing sea level continuity between open ocean and Arctic leads

    Get PDF
    Over the Arctic regions, current conventional altimetry products suffer from a lack of coverage or from degraded performance due to the inadequacy of the standard process- ing applied in the ground segments. This paper presents a set of dedicated algorithms able to process consistently returns from open ocean and from sea ice leads in the Arctic Ocean (detection of water surfaces and derivation of water levels using returns from these surfaces). This processing extends the area over which a precise sea level can be com- puted. In the frame of the ESA Sea Level Climate Change Initiative (CCI, http://cci.esa.int), we have first developed a new surface identification method combining two complementary solutions, one using a multiple criteria approach (in particular the backscattering coefficient and the peakiness coefficient of the waveforms) and one based on a supervised neural net- work approach. Then, a new physical model has been developed (modified from the Brown model to include anisotropy in the scattering from calm protected water surfaces) and has been implemented in a Maximum Likelihood Estimation retracker. This allows us to process both sea-ice lead waveforms (characterized by their peaky shapes) and ocean waveforms (more diffuse returns), guaranteeing, by construction, continuity between open ocean and ice-covered regions. This new processing has been used to produce maps of Arctic sea level anomaly from 18Hz ENVISAT/RA-2 dat

    A 10-year record of Arctic summer sea ice freeboard from CryoSat-2

    Get PDF
    Satellite observations of pan-Arctic sea ice thickness have so far been constrained to winter months. For radar altimeters, conventional methods cannot differentiate leads from meltwater ponds that accumulate at the ice surface in summer months, which is a critical step in the ice thickness calculation. Here, we use over 350 optical and synthetic aperture radar (SAR) images from the summer months to train a 1D convolution neural network for separating CryoSat-2 radar altimeter returns from sea ice floes and leads with an accuracy >80%. This enables us to generate the first pan-Arctic measurements of sea ice radar freeboard for May–September between 2011 and 2020. Results indicate that the freeboard distributions in May and September compare closely to those from a conventional ‘winter’ processor in April and October, respectively. The freeboards capture expected patterns of sea ice melt over the Arctic summer, matching well to ice draft observations from the Beaufort Gyre Exploration Program (BGEP) moorings. However, compared to airborne laser scanner freeboards from Operation IceBridge and airborne EM ice thickness surveys from the Alfred Wegener Institute (AWI) IceBird program, CryoSat-2 freeboards are underestimated by 0.02–0.2 m, and ice thickness is underestimated by 0.28–1.0 m, with the largest differences being over thicker multi-year sea ice. To create the first pan-Arctic summer sea ice thickness dataset we must address primary sources of uncertainty in the conversion from radar freeboard to ice thickness
    corecore