2 research outputs found

    A Scenario Analysis of Wearable Interface Technology Foresight

    Get PDF
    Although the importance and value of wearable interface have gradually being realized, wearable interface related technologies and the priority of adopting these technologies have so far not been clearly recognized. To fill this gap, this paper focuses on the technology planning strategy of organizations that have an interest in developing or adopting wearable interface related technologies. Based on the scenario analysis approach, a technology planning strategy is proposed. In this analysis, thirty wearable interface technologies are classified into six categories, and the importance and risk factors of these categories are then evaluated under two possible scenarios. The main research findings include the discovery that most brain based wearable interface technologies are rated high to medium importance and high risk in all scenarios, and that scenario changes will have less impact on voice based as well as gesture based wearable interface technologies. These results provide a reference for organizations and vendors interested in adopting or developing wearable interface technologies

    Development of a novel human-machine interface exploiting sensor substitution for structural health monitoring

    No full text
    22nd IEEE International Symposium on Robot and Human Interactive Communication: "Living Together, Enjoying Together, and Working Together with Robots!", IEEE RO-MAN 2013 -- 26 August 2013 through 29 August 2013 -- Gyeongju -- 101108For the last 20 years the goal of the structural health monitoring community has been to endow man-made structures with a biologically-inspired nervous system in order to detect, localize, and quantify damage in structures. The effort has focused on collecting a wide array of measurements from sensor networks, extracting features from the data, comparing the data to models, and trying to use this information to determine the presence, extent and type of damage. Typically the Structural Health Monitoring community tries to make predictions of the remaining service life of the structure. It is generally assumed that there will be as little human intervention in this process as possible unless a high-consequence decision must be made. A number of advances have been made in structural health monitoring using this approach over the course of the last decade, but we are still struggling to build autonomous machines that can match the ability of a human to detect, localize and quantify damage in structures. This work aims to explore a new paradigm - cooperative human-machine structural health monitoring. The premise of this paradigm is the idea that a human cooperating with a machine will always significantly outperform a machine or human acting independently. There is no reason to not make full use of human resources that are available to us today. Furthermore, the regulatory and litigious environments that exist today for safety-critical structures are going to make it difficult to adopt health monitoring systems that effectively eliminate humans. Why not instead enhance the natural sensing and perception of human inspectors? During the course of this research effort a vibro-tactile haptic interface is under development that will in some sense allow a human to 'feel the pain of a structure when it is damaged. A number of different studies from the neuroscience community [1], [2], have indicated that it is possible to use 'sensory substitution' to provide some restoration for lost senses such as sight. In this work we consider the possibility of extending the introception of a human to an external structure. This type of capability will help enable a wide variety of cyber-physical systems that must maintain reliability as well as interact with humans. For instance it may be possible to outfit a single human inspector with a haptic interface so they can single-handedly monitor a whole wind farm as if it were a natural extension of their own body. Alternatively, a single person with a haptic interface may be able to sense the state-of-health of a large ocean linear or an entire swarm of flying robots. These ideas will lead to creating a new class of high-performance, cyber-physical systems. © 2013 IEEE
    corecore