544 research outputs found

    Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop

    New strategies for row-crop management based on cost-effective remote sensors

    Get PDF
    Agricultural technology can be an excellent antidote to resource scarcity. Its growth has led to the extensive study of spatial and temporal in-field variability. The challenge of accurate management has been addressed in recent years through the use of accurate high-cost measurement instruments by researchers. However, low rates of technological adoption by farmers motivate the development of alternative technologies based on affordable sensors, in order to improve the sustainability of agricultural biosystems. This doctoral thesis has as main objective the development and evaluation of systems based on affordable sensors, in order to address two of the main aspects affecting the producers: the need of an accurate plant water status characterization to perform a proper irrigation management and the precise weed control. To address the first objective, two data acquisition methodologies based on aerial platforms have been developed, seeking to compare the use of infrared thermometry and thermal imaging to determine the water status of two most relevant row-crops in the region, sugar beet and super high-density olive orchards. From the data obtained, the use of an airborne low-cost infrared sensor to determine the canopy temperature has been validated. Also the reliability of sugar beet canopy temperature as an indicator its of water status has been confirmed. The empirical development of the Crop Water Stress Index (CWSI) has also been carried out from aerial thermal imaging combined with infrared temperature sensors and ground measurements of factors such as water potential or stomatal conductance, validating its usefulness as an indicator of water status in super high-density olive orchards. To contribute to the development of precise weed control systems, a system for detecting tomato plants and measuring the space between them has been developed, aiming to perform intra-row treatments in a localized and precise way. To this end, low cost optical sensors have been used and compared with a commercial LiDAR laser scanner. Correct detection results close to 95% show that the implementation of these sensors can lead to promising advances in the automation of weed control. The micro-level field data collected from the evaluated affordable sensors can help farmers to target operations precisely before plant stress sets in or weeds infestation occurs, paving the path to increase the adoption of Precision Agriculture techniques

    Combining Satellite Images and Cadastral Information for Outdoor Autonomous Mapping and Navigation: A Proof-of-Concept Study in Citric Groves

    Get PDF
    The development of robotic applications for agricultural environments has several problems which are not present in the robotic systems used for indoor environments. Some of these problems can be solved with an efficient navigation system. In this paper, a new system is introduced to improve the navigation tasks for those robots which operate in agricultural environments. Concretely, the paper focuses on the problem related to the autonomous mapping of agricultural parcels (i.e., an orange grove). The map created by the system will be used to help the robots navigate into the parcel to perform maintenance tasks such as weed removal, harvest, or pest inspection. The proposed system connects to a satellite positioning service to obtain the real coordinates where the robotic system is placed. With these coordinates, the parcel information is downloaded from an online map service in order to autonomously obtain a map of the parcel in a readable format for the robot. Finally, path planning is performed by means of Fast Marching techniques using the robot or a team of two robots. This paper introduces the proof-of-concept and describes all the necessary steps and algorithms to obtain the path planning just from the initial coordinates of the robot

    Site-Specific Weed Management Using Remote Sensing

    Get PDF

    The application of remote sensing to resource management and environmental quality programs in Kansas

    Get PDF
    The activities of the Kansas Applied Remote Sensing (KARS) Program during the period April 1, 1982 through Marsh 31, 1983 are described. The most important work revolved around the Kansas Interagency Task Force on Applied Remote Sensing and its efforts to establish an operational service oriented remote sensing program in Kansas state government. Concomitant with this work was the upgrading of KARS capabilities to process data for state agencies through the vehicle of a low cost digital data processing system. The KARS Program continued to take an active role in irrigation mapping. KARS is now integrating data acquired through analysis of LANDSAT into geographic information systems designed for evaluating groundwater resources. KARS also continues to work at the national level on the national inventory of state natural resources information systems

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Crop assessment and monitoring using optical sensors

    Get PDF
    Doctor of PhilosophyDepartment of AgronomyV. P. Vara PrasadCrop assessment and monitoring is important to crop management both at crop production level and research plot level, such as high-throughput phenotyping in breeding programs. Optical sensors based agricultural applications have been around for decades and have soared over the past ten years because of the potential of some new technologies to be low-cost, accessible, and high resolution for crop remote sensing which can help to improve crop management to maintain producers’ income and diminish environmental degradation. The overall objective of this study was to develop methods and compare the different optical sensors in crop assessment and monitoring at different scales and perspectives. At crop production level, we reviewed the current status of different optical sensors used in precision crop production including satellite-based, manned aerial vehicle (MAV)-based, unmanned aircraft system (UAS)-based, and vehicle-based active or passive optical sensors. These types of sensors were compared thoroughly on their specification, data collection efficiency, data availability, applications and limitation, economics, and adoption. At research plot level, four winter wheat experiments were conducted to compare three optical sensors (a Canon T4i® modified color infrared (CIR) camera, a MicaSense RedEdge® multispectral imager and a Holland Scientific® RapidScan CS-45® hand-held active optical sensor (AOS)) based high-throughput phenotyping for in-season biomass estimation, canopy estimation, and grain yield prediction in winter wheat across eleven Feekes stages from 3 through 11.3. The results showed that the vegetation indices (VIs) derived from the Canon T4i CIR camera and the RedEdge multispectral camera were highly correlated and can equally estimate winter wheat in-season biomass between Feekes 3 and 11.1 with the optimum point at booting stage and can predict grain yield as early as Feekes 7. Compared to passive sensors, the RapidScan AOS was less powerful and less temporally stable for biomass estimation and yield prediction. Precise canopy height maps were generated from a CMOS sensor camera and a multispectral imager although the accuracy could still be improved. Besides, an image processing workflow and a radiometric calibration method were developed for UAS based imagery data as bi-products in this project. At temporal dimension, a wheat phenology model based on weather data and field contextual information was developed to predict the starting date of three key growth stages (Feekes 4, 7, and 9), which are critical for N management. The model could be applied to new data within the state of Kansas to optimize the date for optical sensor (such as UAS) data collection and save random or unnecessary field trips. Sensor data collected at these stages could then be plugged into pre-built biomass estimation models (mentioned in the last paragraph) to estimate the productivity variability within 20% relative error

    Development and Validation of a LiDAR Scanner for 3D Evaluation of Soil Vegetal Coverage

    Get PDF
    Water and wind erosion are serious problems due to the loss of soil productivity. The coverage of soil, by means of cover crops or crops residues, is an effective tool to prevent wind and water erosion. The soil coverage could curb wind on the surface, avoid water runoff and reduce direct soil evaporation. Residue spatial distribution is the main factor to successful soil protection. The current work presents details of a prototype, design and validation as a measuring instrument to sense the height of vegetal crop residues based on a short-ranged laser distance sensor (LiDAR) and a computer numerical control (CNC) mechanism. The results obtained in this work showed a high level of confidence to estimate the height and composition of soil vegetal coverage.Fil: Micheletto, Matías Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Zubiaga, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Galantini, Juan Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Cantamutto, Miguel Ángel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orozco, Javier Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentin

    IoT-based systems for soil nutrients assessment in horticulture

    Get PDF
    Soil nutrients assessment has great importance in horticulture. Implementation of an information system for horticulture faces many challenges: (i) great spatial variability within farms (e.g., hilly topography); (ii) different soil properties (e.g., different water holding capacity, different content in sand, sit, clay, and soil organic matter, different pH, and different permeability) for different cultivated plants; (iii) different soil nutrient uptake by different cultivated plants; (iv) small size of monoculture; and (v) great variety of farm components, agroecological zone, and socio-economic factors. Advances in information and communication technologies enable creation of low cost, efficient information systems that would improve resources management and increase productivity and sustainability of horticultural farms. We present an information system based on different sensing capability, Internet of Things, and mobile application for horticultural farms. An overview on different techniques and technologies for soil fertility evaluation is also presented. The results obtained in a botanical garden that simulates the diversity of environment and plant diversity of a horticultural farm are discussed considering the challenges identified in the literature and field research. The study provides a theoretical basis and technical support for the development of technologies that enable horticultural farmers to improve resources management.info:eu-repo/semantics/publishedVersio
    corecore