2 research outputs found

    Microclamping principles from the perspective of micrometrology – A review

    Get PDF
    This paper gives an overview of the field of clamping and gripping principles from the viewpoint of sample fixturing for dimensional metrology for microobjects. The requirements for clamping microcomponents that allow dimensional measurements are therefore explained before principles and solutions of microclamps as found in literature are reviewed and evaluated on basis of these requirements. Results show that there is no single superior clamping principle or method of implementation but rather several effective solutions for specific applications. The core value of this paper is the link between requirements for sample fixturing in dimensional micrometrology and the many approaches already investigated in the field of microclamping. A radar chart and a decision tree summarize and visualize the major aspects of this review. Finally, directions of future key research areas are suggested

    Development of a Micro-scale Assembly Facility with a Three Fingered, Self-aware Assembly Tool and Electro-chemical Etching Capabilities

    No full text
    Part 1: Micro Assembly Processes and SystemsInternational audienceThis abstract outlines current developments of a micro-assembly facility focusing on studies using a three fingered gripper. Individual fingers of the gripper comprise thin fibers ranging in diameter from 7 to 80 μm that are attached to quartz based oscillators and are capable of sensing proximity, contact, and controlling adhesion forces. To optimize gripper finger performance, an electrolytic etching facility has been used to selectively modify oscillator performance and this system is currently being developed for automated processing. To demonstrate current performance of the gripper system, a micro-CMM contact sensing probe has been assembled and a preliminary performance evaluation is presented
    corecore