7 research outputs found

    Reimagining Robotic Walkers For Real-World Outdoor Play Environments With Insights From Legged Robots: A Scoping Review

    Get PDF
    PURPOSE For children with mobility impairments, without cognitive delays, who want to participate in outdoor activities, existing assistive technology (AT) to support their needs is limited. In this review, we investigate the control and design of a selection of robotic walkers while exploring a selection of legged robots to develop solutions that address this gap in robotic AT. METHOD We performed a comprehensive literature search from four main databases: PubMed, Google Scholar, Scopus, and IEEE Xplore. The keywords used in the search were the following: “walker”, “rollator”, “smart walker”, “robotic walker”, “robotic rollator”. Studies were required to discuss the control or design of robotic walkers to be considered. A total of 159 papers were analyzed. RESULTS From the 159 papers, 127 were excluded since they failed to meet our inclusion criteria. The total number of papers analyzed included publications that utilized the same device, therefore we classified the remaining 32 studies into groups based on the type of robotic walker used. This paper reviewed 15 different types of robotic walkers. CONCLUSIONS The ability of many-legged robots to negotiate and transition between a range of unstructured substrates suggests several avenues of future consideration whose pursuit could benefit robotic AT, particularly regarding the present limitations of wheeled paediatric robotic walkers for children’s daily outside use. For more information: Kod*lab (link to kodlab.seas.upenn.edu

    Behavior-based Control for Service Robots inspired by Human Motion Patterns : a Robotic Shopping Assistant

    Get PDF
    Es wurde, unter Verwendung menschenähnlicher Bewegungsmuster und eines verhaltensbasierten Ansatzes, eine Steuerung für mobile Serviceroboter entwickelt, die Aufgabenplanung, globale und lokale Navigation in dynamischen Umgebungen, sowie die gemeinsame Aufgabenausführung mit einem Benutzer umfasst. Das Verhaltensnetzwerk besteht aus Modulen mit voneinander unabhängigen Aufgaben. Das komplexe Gesamtverhalten des Systems ergibt sich durch die Vereinigung der Einzelverhalten (\u27Emergenz\u27)
    corecore