4 research outputs found

    Synchrophasor Based Islanding & Open phase fault Protection in Distribution Systems

    Get PDF
    With the rapid growth of renewable energy resources, energy efficiency initiatives, electric vehicles, energy storage, etc., distribution systems are becoming more complex such that conventional protection, control, and measurement infrastructure – typically concentrated at the main substation, with little to no access to information along the feeder – cannot maintain the reliability of the system without some sort of additional protection, control and measurement functionalities. As an example, a dedicated communication channel for carrying the transfer trip signal from the substation to the Point of Common Coupling (PCC) to prevent islanding operation of alternative resources, has been a requirement for many utilities. In the transformation of the distribution system from a simple radial system to a bidirectional energy flow network, integration of many intelligent devices and applications will also be required. Thus, this situation calls for investment in communication infrastructure, and augmentation of protection, control, and measurement functionalities. The value of power system communication technologies such as synchrophasor measurement technology – which includes the Phasor Measurement Unit (measuring and providing voltage and current phasors in the real time via communication), communication infrastructure, and Phasor Data Concentrator (PDC) – is being recognized through large-scale deployments around the world. However, these implementations are predominantly limited to some monitoring-type applications and are being realized primarily in transmission systems and bulk power systems (≥100 kV), where performance requirements are much more stringent compared to distribution systems. So contrary to transmission systems, the current status of synchrophasor measurement technology can be utilized to its full extent in distribution systems, as shown in current research for anti-islanding and open-phase faults in the distribution feeder protection application, where the number of PMUs and performance required is somewhat lower than the bulk of power energy. Thus, the opportunity to invest in the implementation of synchronized measurement technology in distribution system is timely as it can be coordinated with other investments in feeder modernization, distributed generation (DG) integration, and infrastructure enhancements that are underway, including “smart grid” initiatives. In the first use case of this research, the behavior of the major DG types during islanding is studied through accurate transient modeling of utility type distribution systems using PSCAD-EMTDC and MATLAB. The study proposes augmentation of PMU-based solutions to the current passive islanding protection elements, such as voltage and frequency, and improving the non-detection zone of the passive elements by adapting their settings based on normal loading conditions at closest known instant prior to the fault or islanding occurrence. The solution proposes a system architecture that requires one PMU at each PCC bus and in the main substation. The communication aspect is based on the IEC 6850-90-5 report, where the PMU can subscribe directly to the data stream of the remote PMUs such that the need for PDCs in this application is eliminated, yielding better performance. In the second use case, an open-phase fault – a major concern for distribution utilities from safety of public and equipment perspective – has been studied. Clearing the open-phase fault without identifying the type of fault could result in an attempt by the recloser to reenergize the downed wire; conversely, an undetected open-phase fault could initiate ferro-resonance, thereby stressing equipment and increasing the risk to public safety, both urban and rural. This work discusses comprehensive analysis of symmetrical components of various types of open-phase faults in the distribution feeder with the presence of distributed generators (DGs) and proposes the use of phasor measurement data located at substation and PCC to identify the open-phase fault. The proposed algorithm relies on the rate of change of the various current and voltage sequence components. In the study conducted, the utility type feeder and substation are modeled in PSCAD-EMTDC, and different types of open-phase fault and shunt faults are studied to verify the dependability and security of proposed algorithm

    Synchrophasor Data Analytics for Control and Protection Applications in Smart Grids

    Get PDF
    RÉSUMÉ Des réseaux intelligents sont des réseaux d’énergie fortement distribués où les technologies d’énergie et des services sont intégrés avec des informations, des communications et contrôlent des technologies. Puisque les sources d’énergie renouvelable deviennent plus efficaces et rentables, les réseaux intelligents peuvent livrer la puissance propre, durable, sécuritaire, et fiable aux consommateurs. Cependant, l’utilisation rapide de sources d’énergie renouvelable provoque des défis techniques en termes de surveillance, le contrôle et la protection des réseaux électriques. En fait, l’énergie renouvelable implique les phénomènes qui sont naturellement stochastiques comme la lumière du soleil et le vent. Donc, les réseaux intelligents devraient être capables de surveiller et répondre aux changements tant dans fournisseur d’énergie que dans la demande. L’évolution des réseaux électriques provoque aussi le déploiement de nombreuses unités de mesure sans précédent et d’intelligents appareils de mesure. En vertu des systèmes de communications, les signaux en temps réel et les données peuvent être échangés entre les composants des réseaux intelligents. Le flux de données en temps réel fournit une occasion unique pour des applications axées sur les données et des outils pour démultiplier la modernisation de réseaux et la résilience. Les unités de mesure de phaseur sont les dispositifs spécialisés qui acquièrent le phaseur synchronisé (synchrophasor) des données des réseaux électriques. L’analytique de données Synchrophasor peut potentiellement étre plus performant que des méthodes traditionnelles en termes de prise de décisions. Spécifiquement, l’analytique de données est des approches qualitatives/quantitatives et les algorithmes qui rassemblent et traitent des données pour en fin de compte améliorer la conscience situationnelle dans des réseaux électriques. Motivé par ce fait, cette thèse présente des solutions viables pour l’analytique de données synchrophasor dans le but d’améliorer la surveillance, le contrôle et la protection de réseaux de distribution. La thèse se concentre sur trois fonctionnalités qui sont portées de basé sur l’analytique de données synchrophasor: Détection de perturbation centralisée, surveillance de production décentralisée (PD) et la protection “backup” coordonnée. L’objectif de surveillance de perturbation est de réaliser la détection rapide et fiable de tension/des déviations de fréquence qui affectent la stabilité de réseau. La surveillance de PD est liée à la détection de la présence/absence de ressources énergétiques pour la gestion du flux de puissance.----------ABSTRACT Smart grids are highly distributed energy networks where energy technologies and services are integrated with information, communications and control technologies. As renewable energy sources are becoming more efficient and cost–effective, the smart grids can deliver safe, clean, sustainable and reliable power to consumers. However, the rapid utilization of renewable energy sources brings about technical challenges in terms of monitoring, control, and protection of power systems. In fact, renewable energy involves phenomena which are naturally stochastic such as sunlight and wind. Therefore, the smart grids should be capable of monitoring and responding to changes in both power supply and demand. The evolution of the power systems also gives rise to deployment of unprecedented number of measurement units and smart meters. By virtue of communications systems, real-time signals and data can be exchanged between components of the smart grids. The flow of real-time data provides a unique opportunity for data-driven applications and tools to leverage grid modernization and resiliency. Phasor measurement units are specialized devices that acquire synchronized phasor (synchrophasor) data from the power systems. Synchrophasor data analytics can potentially outperform traditional methods in terms of decision making. Specifically, data analytics are qualitative/quantitative approaches and algorithms that collect and process data to ultimately improve situational awareness in the power systems. Motivated by this fact, this thesis presents viable solutions for synchrophasor data analytics with the aim of improving monitoring, control and protection of power distribution grids. The thesis focuses on three functionalities that are carried out based on synchrophasor data analytics: Centralized disturbance detection, monitoring of distributed generation (DG) systems, and coordinated backup protection. The objective of disturbance monitoring is to achieve fast and reliable detection of voltage/frequency deviations that affect the network stability. The DG monitoring is concerned with detecting presence/absence of energy resources for management of the flow of power. Disturbance and DG monitoring tools pave the way for adaptive backup protection of active distribution networks. The adaptive backup protection scheme ensures the post-fault stability by detecting line faults within a permissible tolerance time. The coordination between control and backup protection systems leads to fast recovery of voltage/frequency and minimizes power outage. The efficacy and reliability of the developed methods and algorithms are validated by extensive computer simulations based on different benchmarks
    corecore