3,777 research outputs found

    Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations

    Get PDF
    The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission

    Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for the future development of computer simulations

    Get PDF
    This paper provides an overview of the state of the art in evacuation simulations. These interactive computer based tools have been developed to help the owners and designers of large public buildings to assess the risks that occupants might face during emergency egress. The development of the Glasgow Evacuation Simulator is used to illustrate the existing generation of tools. This system uses Monte Carlo techniques to control individual and group movements during an evacuation. The end-user can interactively open and block emergency exits at any point. It is also possible to alter the priorities that individuals associate with particular exit routes. A final benefit is that the tool can derive evacuation simulations directly from existing architects models; this reduces the cost of simulations and creates a more prominent role for these tools in the iterative development of large-scale public buildings. Empirical studies have been used to validate the GES system as a tool to support evacuation training. The development of these tools has been informed by numerous human factors studies and by recent accident investigations. For example, the 2003 fire in the Station nightclub in Rhode Island illustrated the way in which most building occupants retrace their steps to an entrance even when there are alternate fire exits. The second half of this paper uses this introduction to criticise the existing state of the art in evacuation simulations. These criticisms are based on a detailed study of the recent findings from the 9/11 Commission (2004). Ten different lessons are identified. Some relate to the need to better understand the role of building management and security systems in controlling egress from public buildings. Others relate to the human factors involved in coordinating distributed groups of emergency personnel who may be physically exhausted by the demands of an evacuation. Arguably the most important findings centre on the need to model the ingress and egress of emergency personnel from these structures. The previous focus of nearly all-existing simulation tools has been on the evacuation of building occupants rather than on the safety of first responders1

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Modeling an ontology on accessible evacuation routes for emergencies

    Get PDF
    Providing alert communication in emergency situations is vital to reduce the number of victims. However, this is a challenging goal for researchers and professionals due to the diverse pool of prospective users, e.g. people with disabilities as well as other vulnerable groups. Moreover, in the event of an emergency situation, many people could become vulnerable because of exceptional circumstances such as stress, an unknown environment or even visual impairment (e.g. fire causing smoke). Within this scope, a crucial activity is to notify affected people about safe places and available evacuation routes. In order to address this need, we propose to extend an ontology, called SEMA4A (Simple EMergency Alert 4 [for] All), developed in a previous work for managing knowledge about accessibility guidelines, emergency situations and communication technologies. In this paper, we introduce a semi-automatic technique for knowledge acquisition and modeling on accessible evacuation routes. We introduce a use case to show applications of the ontology and conclude with an evaluation involving several experts in evacuation procedures. © 2014 Elsevier Ltd. All rights reserved

    Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation

    Full text link
    State-of-the-art emergency navigation approaches are designed to evacuate civilians during a disaster based on real-time decisions using a pre-defined algorithm and live sensory data. Hence, casualties caused by the poor decisions and guidance are only apparent at the end of the evacuation process and cannot then be remedied. Previous research shows that the performance of routing algorithms for evacuation purposes are sensitive to the initial distribution of evacuees, the occupancy levels, the type of disaster and its as well its locations. Thus an algorithm that performs well in one scenario may achieve bad results in another scenario. This problem is especially serious in heuristic-based routing algorithms for evacuees where results are affected by the choice of certain parameters. Therefore, this paper proposes a simulation-based evacuee routing algorithm that optimises evacuation by making use of the high computational power of cloud servers. Rather than guiding evacuees with a predetermined routing algorithm, a robust Cognitive Packet Network based algorithm is first evaluated via a cloud-based simulator in a faster-than-real-time manner, and any "simulated casualties" are then re-routed using a variant of Dijkstra's algorithm to obtain new safe paths for them to exits. This approach can be iterated as long as corrective action is still possible.Comment: Submitted to PerNEM'15 for revie

    VELOS : a VR platform for ship-evacuation analysis

    Get PDF
    Virtual Environment for Life On Ships (VELOS) is a multi-user Virtual Reality (VR) system that aims to support designers to assess (early in the design process) passenger and crew activities on a ship for both normal and hectic conditions of operations and to improve ship design accordingly. This article focuses on presenting the novel features of VELOS related to both its VR and evacuation-specific functionalities. These features include: (i) capability of multiple users’ immersion and active participation in the evacuation process, (ii) real-time interactivity and capability for making on-the-fly alterations of environment events and crowd-behavior parameters, (iii) capability of agents and avatars to move continuously on decks, (iv) integrated framework for both the simplified and advanced method of analysis according to the IMO/MSC 1033 Circular, (v) enrichment of the ship geometrical model with a topological model suitable for evacuation analysis, (vi) efficient interfaces for the dynamic specification and handling of the required heterogeneous input data, and (vii) post-processing of the calculated agent trajectories for extracting useful information for the evacuation process. VELOS evacuation functionality is illustrated using three evacuation test cases for a ro–ro passenger ship

    A smart dynamic crowd evacuation system for exhibition centers

    Get PDF
    In this paper, we consider the problem of finding the safest evacuation route in a multi-exit exhibition center while the fire hazard spreads. We first propose a system composed of sensor nodes to collect pertinent safety data. We present a real-time dynamic evacuation system that considers the changing conditions in the risks associated with each hallway segment in terms of walking distance, heat, two major asphyxiant fire gases and congestion. Our system activates smart panels placed at major junctions of the hallways to guide evacuees towards the appropriate exit by displaying the proper escape direction. This work can pave the way towards the development of next-generation smart exhibition centers, where crowd safety is among the top priorities
    corecore