5 research outputs found

    Attention Based Vehicle Trajectory Prediction

    Get PDF
    International audienceSelf-driving vehicles need to continuously analyse the driving scene, understand the behavior of other road users and predict their future trajectories in order to plan a safe motion and reduce their reaction time. Motivated by this idea, this paper addresses the problem of vehicle trajectory prediction over an extended horizon. On highways, human drivers continuously adapt their speed and paths according to the behavior of their neighboring vehicles. Therefore, vehicles' trajectories are very correlated and considering vehicle interactions makes motion prediction possible even before the start of a clear maneuver pattern. To this end, we introduce and analyze trajectory prediction methods based on how they model the vehicles interactions. Inspired by human reasoning, we use an attention mechanism that explicitly highlights the importance of neighboring vehicles with respect to their future states. We go beyond pairwise vehicle interactions and model higher order interactions. Moreover, the existence of different goals and driving behaviors induces multiple potential futures. We exploit a combination of global and partial attention paid to surrounding vehicles to generate different possible trajectory. Experiments on highway datasets show that the proposed model outperforms the state-of-the-art performances

    Naturalistic Driver Intention and Path Prediction using Machine Learning

    Get PDF
    Autonomous vehicles are still yet to be available to the public. This is because there are a number of challenges that have not been overcome to ensure that autonomous vehicles can safely and efficiently drive on public roads. Accurate prediction of other vehicles is vital for safe driving, as interacting with other vehicles is unavoidable on public streets. This thesis explores reasons why this problem of scene understanding is still unsolved, and presents methods for driver intention and path prediction. The thesis focuses on intersections, as this is a very complex scenario in which to predict the actions of human drivers. There is very limited data available for intersection studies from the perspective of an autonomous vehicle. This thesis presents a very large dataset of over 23,000 vehicle trajectories, used to validate the algorithms presented in this thesis. This dataset was collected using a lidar based vehicle detection and tracking system onboard a vehicle. Analytics of this data is presented. To determine the intent of vehicle at an intersection, a method for manoeuvre classification through the use of recurrent neural networks is presented. This allows accurate predictions of which destination a vehicle will take at an unsignalised intersection, based on that vehicle's approach. The final contribution of this thesis presents a method for driver path prediction, based on recurrent neural networks. It produces a multi-modal prediction for the vehicle’s path with uncertainty assigned to each mode. The output modes are not hand labelled, but instead learned from the data. This results in there not being a fixed number of output modes. Whilst the application of this method is vehicle prediction, this method shows significant promise to be used in other areas of robotics
    corecore