1,971 research outputs found

    Distributed coloring in sparse graphs with fewer colors

    Full text link
    This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring nn-vertex planar graphs with 7 colors in O(logn)O(\log n) rounds. Here, we show how to color planar graphs with 6 colors in \mbox{polylog}(n) rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every nn-vertex planar graph with 4 colors in o(n)o(n) rounds.Comment: 16 pages, 4 figures - An extended abstract of this work was presented at PODC'18 (ACM Symposium on Principles of Distributed Computing

    On the Complexity of Distributed Splitting Problems

    Full text link
    One of the fundamental open problems in the area of distributed graph algorithms is the question of whether randomization is needed for efficient symmetry breaking. While there are fast, polylogn\text{poly}\log n-time randomized distributed algorithms for all of the classic symmetry breaking problems, for many of them, the best deterministic algorithms are almost exponentially slower. The following basic local splitting problem, which is known as the \emph{weak splitting} problem takes a central role in this context: Each node of a graph G=(V,E)G=(V,E) has to be colored red or blue such that each node of sufficiently large degree has at least one node of each color among its neighbors. Ghaffari, Kuhn, and Maus [STOC '17] showed that this seemingly simple problem is complete w.r.t. the above fundamental open question in the following sense: If there is an efficient polylogn\text{poly}\log n-time determinstic distributed algorithm for weak splitting, then there is such an algorithm for all locally checkable graph problems for which an efficient randomized algorithm exists. In this paper, we investigate the distributed complexity of weak splitting and some closely related problems. E.g., we obtain efficient algorithms for special cases of weak splitting, where the graph is nearly regular. In particular, we show that if δ\delta and Δ\Delta are the minimum and maximum degrees of GG and if δ=Ω(logn)\delta=\Omega(\log n), weak splitting can be solved deterministically in time O(Δδpoly(logn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log n)\big). Further, if δ=Ω(loglogn)\delta = \Omega(\log\log n) and Δ2εδ\Delta\leq 2^{\varepsilon\delta}, there is a randomized algorithm with time complexity O(Δδpoly(loglogn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log\log n)\big)

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized

    Local Conflict Coloring

    Get PDF
    Locally finding a solution to symmetry-breaking tasks such as vertex-coloring, edge-coloring, maximal matching, maximal independent set, etc., is a long-standing challenge in distributed network computing. More recently, it has also become a challenge in the framework of centralized local computation. We introduce conflict coloring as a general symmetry-breaking task that includes all the aforementioned tasks as specific instantiations --- conflict coloring includes all locally checkable labeling tasks from [Naor\&Stockmeyer, STOC 1993]. Conflict coloring is characterized by two parameters ll and dd, where the former measures the amount of freedom given to the nodes for selecting their colors, and the latter measures the number of constraints which colors of adjacent nodes are subject to.We show that, in the standard LOCAL model for distributed network computing, if l/d \textgreater{} \Delta, then conflict coloring can be solved in O~(Δ)+logn\tilde O(\sqrt{\Delta})+\log^*n rounds in nn-node graphs with maximum degree Δ\Delta, where O~\tilde O ignores the polylog factors in Δ\Delta. The dependency in~nn is optimal, as a consequence of the Ω(logn)\Omega(\log^*n) lower bound by [Linial, SIAM J. Comp. 1992] for (Δ+1)(\Delta+1)-coloring. An important special case of our result is a significant improvement over the best known algorithm for distributed (Δ+1)(\Delta+1)-coloring due to [Barenboim, PODC 2015], which required O~(Δ3/4)+logn\tilde O(\Delta^{3/4})+\log^*n rounds. Improvements for other variants of coloring, including (Δ+1)(\Delta+1)-list-coloring, (2Δ1)(2\Delta-1)-edge-coloring, TT-coloring, etc., also follow from our general result on conflict coloring. Likewise, in the framework of centralized local computation algorithms (LCAs), our general result yields an LCA which requires a smaller number of probes than the previously best known algorithm for vertex-coloring, and works for a wide range of coloring problems

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    The Complexity of Distributed Edge Coloring with Small Palettes

    Full text link
    The complexity of distributed edge coloring depends heavily on the palette size as a function of the maximum degree Δ\Delta. In this paper we explore the complexity of edge coloring in the LOCAL model in different palette size regimes. 1. We simplify the \emph{round elimination} technique of Brandt et al. and prove that (2Δ2)(2\Delta-2)-edge coloring requires Ω(logΔlogn)\Omega(\log_\Delta \log n) time w.h.p. and Ω(logΔn)\Omega(\log_\Delta n) time deterministically, even on trees. The simplified technique is based on two ideas: the notion of an irregular running time and some general observations that transform weak lower bounds into stronger ones. 2. We give a randomized edge coloring algorithm that can use palette sizes as small as Δ+O~(Δ)\Delta + \tilde{O}(\sqrt{\Delta}), which is a natural barrier for randomized approaches. The running time of the algorithm is at most O(logΔTLLL)O(\log\Delta \cdot T_{LLL}), where TLLLT_{LLL} is the complexity of a permissive version of the constructive Lovasz local lemma. 3. We develop a new distributed Lovasz local lemma algorithm for tree-structured dependency graphs, which leads to a (1+ϵ)Δ(1+\epsilon)\Delta-edge coloring algorithm for trees running in O(loglogn)O(\log\log n) time. This algorithm arises from two new results: a deterministic O(logn)O(\log n)-time LLL algorithm for tree-structured instances, and a randomized O(loglogn)O(\log\log n)-time graph shattering method for breaking the dependency graph into independent O(logn)O(\log n)-size LLL instances. 4. A natural approach to computing (Δ+1)(\Delta+1)-edge colorings (Vizing's theorem) is to extend partial colorings by iteratively re-coloring parts of the graph. We prove that this approach may be viable, but in the worst case requires recoloring subgraphs of diameter Ω(Δlogn)\Omega(\Delta\log n). This stands in contrast to distributed algorithms for Brooks' theorem, which exploit the existence of O(logΔn)O(\log_\Delta n)-length augmenting paths
    corecore