1 research outputs found

    Deterministic Sparse Fourier Transform with an ell_infty Guarantee

    Full text link
    In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which asks to read only a few entries of x∈Cnx \in \mathbb{C}^n and design a recovery algorithm such that the output of the algorithm approximates x^\hat x, the Discrete Fourier Transform (DFT) of xx. The randomized case has been well-understood, while the main work in the deterministic case is that of Merhi et al.\@ (J Fourier Anal Appl 2018), which obtains O(k2logβ‘βˆ’1kβ‹…log⁑5.5n)O(k^2 \log^{-1}k \cdot \log^{5.5}n) samples and a similar runtime with the β„“2/β„“1\ell_2/\ell_1 guarantee. We focus on the stronger β„“βˆž/β„“1\ell_{\infty}/\ell_1 guarantee and the closely related problem of incoherent matrices. We list our contributions as follows. 1. We find a deterministic collection of O(k2log⁑n)O(k^2 \log n) samples for the β„“βˆž/β„“1\ell_\infty/\ell_1 recovery in time O(nklog⁑2n)O(nk \log^2 n), and a deterministic collection of O(k2log⁑2n)O(k^2 \log^2 n) samples for the β„“βˆž/β„“1\ell_\infty/\ell_1 sparse recovery in time O(k2log⁑3n)O(k^2 \log^3n). 2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices of the DFT matrix, via a derandomization of Bernstein's inequality and bounds on exponential sums considered in analytic number theory. Our first construction matches a previous randomized construction of Nelson, Nguyen and Woodruff (RANDOM'12), where there was no constraint on the form of the incoherent matrix. Our algorithms are nearly sample-optimal, since a lower bound of Ξ©(k2+klog⁑n)\Omega(k^2 + k \log n) is known, even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of Ξ©(k2log⁑n/log⁑k)\Omega(k^2 \log n/ \log k) is known for incoherent matrices.Comment: ICALP 2020--presentation improved according to reviewers' comment
    corecore