49,536 research outputs found

    The Rank of the Covariance Matrix of an Evanescent Field

    Full text link
    Evanescent random fields arise as a component of the 2-D Wold decomposition of homogenous random fields. Besides their theoretical importance, evanescent random fields have a number of practical applications, such as in modeling the observed signal in the space time adaptive processing (STAP) of airborne radar data. In this paper we derive an expression for the rank of the low-rank covariance matrix of a finite dimension sample from an evanescent random field. It is shown that the rank of this covariance matrix is completely determined by the evanescent field spectral support parameters, alone. Thus, the problem of estimating the rank lends itself to a solution that avoids the need to estimate the rank from the sample covariance matrix. We show that this result can be immediately applied to considerably simplify the estimation of the rank of the interference covariance matrix in the STAP problem

    Structural Analysis of Network Traffic Matrix via Relaxed Principal Component Pursuit

    Full text link
    The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a new decomposition model for the network traffic matrix. According to this model, we carry out the structural analysis by decomposing the network traffic matrix into three sub-matrices, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which is similar to the Robust Principal Component Analysis (RPCA) problem previously studied in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimental results. Finally, we further discuss several features of the deterministic and noise traffic. Our study develops a novel method for the problem of structural analysis of the traffic matrix, which is robust against pollution of large volume anomalies.Comment: Accepted to Elsevier Computer Network

    Optimal CUR Matrix Decompositions

    Full text link
    The CUR decomposition of an m×nm \times n matrix AA finds an m×cm \times c matrix CC with a subset of c<nc < n columns of A,A, together with an r×nr \times n matrix RR with a subset of r<mr < m rows of A,A, as well as a c×rc \times r low-rank matrix UU such that the matrix CURC U R approximates the matrix A,A, that is, ∣∣A−CUR∣∣F2≤(1+ϵ)∣∣A−Ak∣∣F2 || A - CUR ||_F^2 \le (1+\epsilon) || A - A_k||_F^2, where ∣∣.∣∣F||.||_F denotes the Frobenius norm and AkA_k is the best m×nm \times n matrix of rank kk constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where c=O(k/ϵ)c=O(k/\epsilon) and r=O(k/ϵ)r=O(k/\epsilon) and rank(U)=k(U) = k. Up to constant factors, our algorithms are simultaneously optimal in c,r,c, r, and rank(U)(U).Comment: small revision in lemma 4.
    • …
    corecore