105,466 research outputs found

    Evolution of the social network of scientific collaborations

    Full text link
    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.Comment: 14 pages, 15 figure

    Error and attack tolerance of complex networks

    Full text link
    Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.Comment: 14 pages, 4 figures, Late

    The Economics of Small Worlds

    Get PDF
    We examine a simple economic model of network formation where agents benefit from indirect relationships. We show that small-world features—short path lengths between nodes together with highly clustered link structures—necessarily emerge for a wide set of parameters

    Generalizing Kronecker graphs in order to model searchable networks

    Get PDF
    This paper describes an extension to stochastic Kronecker graphs that provides the special structure required for searchability, by defining a “distance”-dependent Kronecker operator. We show how this extension of Kronecker graphs can generate several existing social network models, such as the Watts-Strogatz small-world model and Kleinberg’s latticebased model. We focus on a specific example of an expanding hypercube, reminiscent of recently proposed social network models based on a hidden hyperbolic metric space, and prove that a greedy forwarding algorithm can find very short paths of length O((log log n)^2) for graphs with n nodes
    • 

    corecore