9,154 research outputs found

    Endogenous measures for contextualising large-scale social phenomena: a corpus-based method for mediated public discourse

    Get PDF
    This work presents an interdisciplinary methodology for developing endogenous measures of group membership through analysis of pervasive linguistic patterns in public discourse. Focusing on political discourse, this work critiques the conventional approach to the study of political participation, which is premised on decontextualised, exogenous measures to characterise groups. Considering the theoretical and empirical weaknesses of decontextualised approaches to large-scale social phenomena, this work suggests that contextualisation using endogenous measures might provide a complementary perspective to mitigate such weaknesses. This work develops a sociomaterial perspective on political participation in mediated discourse as affiliatory action performed through language. While the affiliatory function of language is often performed consciously (such as statements of identity), this work is concerned with unconscious features (such as patterns in lexis and grammar). This work argues that pervasive patterns in such features that emerge through socialisation are resistant to change and manipulation, and thus might serve as endogenous measures of sociopolitical contexts, and thus of groups. In terms of method, the work takes a corpus-based approach to the analysis of data from the Twitter messaging service whereby patterns in users’ speech are examined statistically in order to trace potential community membership. The method is applied in the US state of Michigan during the second half of 2018—6 November having been the date of midterm (i.e. non-Presidential) elections in the United States. The corpus is assembled from the original posts of 5,889 users, who are nominally geolocalised to 417 municipalities. These users are clustered according to pervasive language features. Comparing the linguistic clusters according to the municipalities they represent finds that there are regular sociodemographic differentials across clusters. This is understood as an indication of social structure, suggesting that endogenous measures derived from pervasive patterns in language may indeed offer a complementary, contextualised perspective on large-scale social phenomena

    Process intensification of oxidative coupling of methane

    No full text

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Qluster: An easy-to-implement generic workflow for robust clustering of health data

    Get PDF
    The exploration of heath data by clustering algorithms allows to better describe the populations of interest by seeking the sub-profiles that compose it. This therefore reinforces medical knowledge, whether it is about a disease or a targeted population in real life. Nevertheless, contrary to the so-called conventional biostatistical methods where numerous guidelines exist, the standardization of data science approaches in clinical research remains a little discussed subject. This results in a significant variability in the execution of data science projects, whether in terms of algorithms used, reliability and credibility of the designed approach. Taking the path of parsimonious and judicious choice of both algorithms and implementations at each stage, this article proposes Qluster, a practical workflow for performing clustering tasks. Indeed, this workflow makes a compromise between (1) genericity of applications (e.g. usable on small or big data, on continuous, categorical or mixed variables, on database of high-dimensionality or not), (2) ease of implementation (need for few packages, few algorithms, few parameters, ...), and (3) robustness (e.g. use of proven algorithms and robust packages, evaluation of the stability of clusters, management of noise and multicollinearity). This workflow can be easily automated and/or routinely applied on a wide range of clustering projects. It can be useful both for data scientists with little experience in the field to make data clustering easier and more robust, and for more experienced data scientists who are looking for a straightforward and reliable solution to routinely perform preliminary data mining. A synthesis of the literature on data clustering as well as the scientific rationale supporting the proposed workflow is also provided. Finally, a detailed application of the workflow on a concrete use case is provided, along with a practical discussion for data scientists. An implementation on the Dataiku platform is available upon request to the authors

    Psychographic And Behavioral Segmentation Of Food Delivery Application Customers To Increase Intention To Use

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThis study presents a framework for segmenting Food Delivery Application (FDA) customers based on psychographic and behavioral variables as an alternative to existing segmentation. Customer segments are proposed by applying clustering methods to primary data from an electronic survey. Psychographic and behavioral constructs are formulated as hypotheses based on existing literature, and then evaluated as segmentation variables regarding their discriminatory power for customer segmentation. Detected relevant variables are used in the application of clustering techniques to find adequate boundaries within customer groupings for segmentation purposes. Characterization of customer segments is performed and enriched with implications of findings in FDA marketing strategies. This paper contributes to theory by providing new findings on segmentation that are relevant for an online context. In addition, it contributes to practice by detailing implications of customer segments in an online sales strategy, allowing marketing managers and FDA businesses to capitalize knowledge in their conversion funnel designs

    The Future of Work and Digital Skills

    Get PDF
    The theme for the events was "The Future of Work and Digital Skills". The 4IR caused a hollowing out of middle-income jobs (Frey & Osborne, 2017) but COVID-19 exposed the digital gap as survival depended mainly on digital infrastructure and connectivity. Almost overnight, organizations that had not invested in a digital strategy suddenly realized the need for such a strategy and the associated digital skills. The effects have been profound for those who struggled to adapt, while those who stepped up have reaped quite the reward.Therefore, there are no longer certainties about what the world will look like in a few years from now. However, there are certain ways to anticipate the changes that are occurring and plan on how to continually adapt to an increasingly changing world. Certain jobs will soon be lost and will not come back; other new jobs will however be created. Using data science and other predictive sciences, it is possible to anticipate, to the extent possible, the rate at which certain jobs will be replaced and new jobs created in different industries. Accordingly, the collocated events sought to bring together government, international organizations, academia, industry, organized labour and civil society to deliberate on how these changes are occurring in South Africa, how fast they are occurring and what needs to change in order to prepare society for the changes.Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) British High Commission (BHC)School of Computin

    Statistical Learning for Gene Expression Biomarker Detection in Neurodegenerative Diseases

    Get PDF
    In this work, statistical learning approaches are used to detect biomarkers for neurodegenerative diseases (NDs). NDs are becoming increasingly prevalent as populations age, making understanding of disease and identification of biomarkers progressively important for facilitating early diagnosis and the screening of individuals for clinical trials. Advancements in gene expression profiling has enabled the exploration of disease biomarkers at an unprecedented scale. The work presented here demonstrates the value of gene expression data in understanding the underlying processes and detection of biomarkers of NDs. The value of novel approaches to previously collected -omics data is shown and it is demonstrated that new therapeutic targets can be identified. Additionally, the importance of meta-analysis to improve power of multiple small studies is demonstrated. The value of blood transcriptomics data is shown in applications to researching NDs to understand underlying processes using network analysis and a novel hub detection method. Finally, after demonstrating the value of blood gene expression data for investigating NDs, a combination of feature selection and classification algorithms were used to identify novel accurate biomarker signatures for the diagnosis and prognosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). Additionally, the use of feature pools based on previous knowledge of disease and the viability of neural networks in dimensionality reduction and biomarker detection is demonstrated and discussed. In summary, gene expression data is shown to be valuable for the investigation of ND and novel gene biomarker signatures for the diagnosis and prognosis of PD and AD

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury
    • 

    corecore