13,979 research outputs found
Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations
Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions
ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases
The objective of this document was to standardise published cardiopulmonary exercise testing (CPET) protocols for improved interpretation in clinical settings and multicentre research projects. This document: 1) summarises the protocols and procedures used in published studies focusing on incremental CPET in chronic lung conditions; 2) presents standard incremental protocols for CPET on a stationary cycle ergometer and a treadmill; and 3) provides patients’ perspectives on CPET obtained through an online survey supported by the European Lung Foundation. We systematically reviewed published studies obtained from EMBASE, Medline, Scopus, Web of Science and the Cochrane Library from inception to January 2017. Of 7914 identified studies, 595 studies with 26 523 subjects were included. The literature supports a test protocol with a resting phase lasting at least 3 min, a 3-min unloaded phase, and an 8- to 12-min incremental phase with work rate increased linearly at least every minute, followed by a recovery phase of at least 2–3 min. Patients responding to the survey (n=295) perceived CPET as highly beneficial for their diagnostic assessment and informed the Task Force consensus. Future research should focus on the individualised estimation of optimal work rate increments across different lung diseases, and the collection of robust normative data.The document facilitates standardisation of conducting, reporting and interpreting cardiopulmonary exercise tests in chronic lung diseases for comparison of reference data, multi-centre studies and assessment of interventional efficacy. http://bit.ly/31SXeB
Recommended from our members
A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure
Hypertension or high blood pressure is a leading cause of death throughout the world and a critical factor for increasing the risk of serious diseases, including cardiovascular diseases such as stroke and heart failure. Blood pressure is a primary vital sign that must be monitored regularly for the early detection, prevention and treatment of cardiovascular diseases. Traditional blood pressure measurement techniques are either invasive or cuff-based, which are impractical, intermittent, and uncomfortable for patients. Over the past few decades, several indirect approaches using photoplethysmogram (PPG) have been investigated, namely, pulse transit time, pulse wave velocity, pulse arrival time and pulse wave analysis, in an effort to utilise PPG for estimating blood pressure. Recent advancements in signal processing techniques, including machine learning and artificial intelligence, have also opened up exciting new horizons for PPG-based cuff less and continuous monitoring of blood pressure. Such a device will have a significant and transformative impact in monitoring patients’ vital signs, especially those at risk of cardiovascular disease. This paper provides a comprehensive review for non-invasive cuff-less blood pressure estimation using the PPG approach along with their challenges and limitations
Comparison of two cardiac output monitors, qCO and LiDCO, during general anesthesia
Background: Optimization of cardiac output (CO) has been evidenced to reduce postoperative complications and to expedite the recovery. Likewise, CO and other dynamic cardiac parameters can describe the systemic blood flow and tissue oxygenation state and can be useful in different clinical fields. This study aimed to validate the qCO monitor (Quantium Medical, Barcelona, Spain), a new device to estimate CO and other related parameters in a continuous, fully non-invasive way using advanced digital signal processing of impedance cardiography.
Methods: The LiDCOrapidv2 (LiDCO Ltd, London, UK) was used to compare the performance of the qCO in 15 patients during major surgery under general anesthesia. Full surgeries were recorded and cardiac output obtained by both devices was compared by using correlation and Bland-Altman analysis.
Results: The Bland-Altman analysis showed sufficient agreement with a mean bias of -0.03 ± 0.71 L/min.
Conclusions: The findings showed that both systems offered comparable values and thus the non-invasive measurement of CO with qCO is a promising, feasible method. Further investigation will be required to validate this new device against calibrated devices and outcome studies would also be highly recommended.Postprint (author's final draft
Gated metabolic myocardial imaging, a surrogate for dual perfusion-metabolism imaging by positron emission tomography
Acknowledgments The authors are grateful for the help from Dr H Ali and Dr A Dawson. Funding: This study was performed using a research grant from the Aberdeen Royal Hospitals Trust's Endowment Fund, with further support from the Department of Medical Physics at the University of Aberdeen, for which the authors express their gratitude.Peer reviewedPublisher PD
Recommended from our members
Evaluation of the Linear Relationship Between Pulse Arrival Time and Blood Pressure in ICU Patients: Potential and Limitations
A variety of techniques based on the indirect measurement of blood pressure (BP) by Pulse Transit Time (PTT) have been explored over the past few years. Such an approach has the potential in providing continuous and non-invasive beat to beat blood pressure without the use of a cuff. Pulse Arrival Time (PAT) which includes the cardiac pre-ejection period has been proposed as a surrogate of PTT, however, the balance between its questioned accuracy and measurement simplicity has yet to be established. The present work assessed the degree of linear relationship between PAT and blood pressure on 96 h of continuous electrocardiography and invasive radial blood pressure waveforms in a group of 11 young ICU patients. Participants were selected according to strict exclusion criteria including no use of vasoactive medications and presence of clinical conditions associated with cardiovascular diseases. The average range of variation for diastolic BP was 60 to 79 mmHg while systolic BP varied between 123 and 158 mmHg in the study database. The overall Pearson correlation coefficient for systolic and diastolic blood pressure was −0.5 and −0.42, respectively, while the mean absolute error was 3.9 and 7.6 mmHg. It was concluded that the utilization of PAT for the continuous non-invasive blood pressure estimation is rather limited according to the experimental setup, nonetheless the correlation coefficient performed better when the range of variation of blood pressure was high over periods of 30 min suggesting that PAT has the potential to be used as indicator of changes relating to hypertensive or hypotensive episodes
Optically gated beating-heart imaging
The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally "freeze" this movement and overcome motion artefacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart
Studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics Semiannual status report
Effects of gravitational and inertial forces on cardiovascular and respiratory dynamic
- …
