630,616 research outputs found

    An improved negative selection algorithm based on the hybridization of cuckoo search and differential evolution for anomaly detection

    Get PDF
    The biological immune system (BIS) is characterized by networks of cells, tissues, and organs communicating and working in synchronization. It also has the ability to learn, recognize, and remember, thus providing the solid foundation for the development of Artificial Immune System (AIS). Since the emergence of AIS, it has proved itself as an area of computational intelligence. Real-Valued Negative Selection Algorithm with Variable-Sized Detectors (V-Detectors) is an offspring of AIS and demonstrated its potentials in the field of anomaly detection. The V-Detectors algorithm depends greatly on the random detectors generated in monitoring the status of a system. These randomly generated detectors suffer from not been able to adequately cover the non-self space, which diminishes the detection performance of the V-Detectors algorithm. This research therefore proposed CSDE-V-Detectors which entail the use of the hybridization of Cuckoo Search (CS) and Differential Evolution (DE) in optimizing the random detectors of the V-Detectors. The DE is integrated with CS at the population initialization by distributing the population linearly. This linear distribution gives the population a unique, stable, and progressive distribution process. Thus, each individual detector is characteristically different from the other detectors. CSDE capabilities of global search, and use of L´evy flight facilitates the effectiveness of the detector set in the search space. In comparison with V-Detectors, cuckoo search, differential evolution, support vector machine, artificial neural network, na¨ıve bayes, and k-NN, experimental results demonstrates that CSDE-V-Detectors outperforms other algorithms with an average detection rate of 95:30% on all the datasets. This signifies that CSDE-V-Detectors can efficiently attain highest detection rates and lowest false alarm rates for anomaly detection. Thus, the optimization of the randomly detectors of V-Detectors algorithm with CSDE is proficient and suitable for anomaly detection tasks

    Pixel Detectors

    Full text link
    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh radiation environment at the LHC without severe compromises in performance. From these developments a number of different applications have spun off, most notably for biomedical imaging. Beyond hybrid pixels, a number of monolithic or semi-monolithic developments, which do not require complicated hybridization but come as single sensor/IC entities, have appeared and are currently developed to greater maturity. Most advanced in terms of maturity are so called CMOS active pixels and DEPFET pixels. The present state in the construction of the hybrid pixel detectors for the LHC experiments together with some hybrid pixel detector spin-off is reviewed. In addition, new developments in monolithic or semi-monolithic pixel devices are summarized.Comment: 14 pages, 38 drawings/photographs in 21 figure

    New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    Full text link
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very good performance. We present here the project and report on its status, in particular the performance of large size prototypes with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa

    Experimental Measurements and Computer Simulation of Fission Product Gamma-Ray Spectra

    Get PDF
    Airborne gamma ray spectrometry using high volume scintillation detectors, optionally in conjunction with Ge detectors, has potential for making rapid environmental measurements in response to nuclear accidents. An experimental investigation and computer simulation have been used to characterise the response of such detectors to short lived fission products. Small samples of 235U were irradiated in a research reactor for short periods, to generate fission product sources. Gamma ray spectra were recorded over a period of one year using both high volume scintillation detectors and semiconductor detectors. The main gamma emitting nuclides have been identified, and their associated signals in each detector defined. Simulation work has been used to calculate the corresponding spectra which would have been observed at airborne survey heights, or from fission product sources irradiated for a prolonged period. While Ge detectors can record a fuller range of isotopes, of interest in characterising release terms, the NaI spectra also have potential for providing data on a range of radiologically important isotopes at all stages

    Performance Assessment of Feature Detection Algorithms: A Methodology and Case Study on Corner Detectors

    Get PDF
    In this paper we describe a generic methodology for evaluating the labeling performance of feature detectors. We describe a method for generating a test set and apply the methodology to the performance assessment of three well-known corner detectors: the Kitchen-Rosenfeld, Paler et al. and Harris-Stephens corner detectors. The labeling deficiencies of each of these detectors is related to their discrimination ability between corners and various of the features which comprise the class of noncorners

    Entanglement creation between two causally-disconnected objects

    Full text link
    We study the full entanglement dynamics of two uniformly accelerated Unruh-DeWitt detectors with no direct interaction in between but each coupled to a common quantum field and moving back-to-back in the field vacuum. For two detectors initially prepared in a separable state our exact results show that quantum entanglement between the detectors can be created by the quantum field under some specific circumstances, though each detector never enters the other's light cone in this setup. In the weak coupling limit, this entanglement creation can occur only if the initial moment is placed early enough and the proper acceleration of the detectors is not too large or too small compared to the natural frequency of the detectors. Once entanglement is created it lasts only a finite duration, and always disappears at late times. Prior result by Reznik derived using the time-dependent perturbation theory with extended integration domain is shown to be a limiting case of our exact solutions at some specific moment. In the strong coupling and high acceleration regime, vacuum fluctuations experienced by each detector locally always dominate over the cross correlations between the detectors, so entanglement between the detectors will never be generated.Comment: 16 pages, 8 figures; added Ref.[7] and related discussion
    corecore