2,516 research outputs found

    Geomagnetic origin of the radio emission from cosmic ray induced air showers observed by CODALEMA

    Get PDF
    The new setup of the CODALEMA experiment installed at the Radio Observatory in Nancay, France, is described. It includes broadband active dipole antennas and an extended and upgraded particle detector array. The latter gives access to the air shower energy, allowing us to compute the efficiency of the radio array as a function of energy. We also observe a large asymmetry in counting rates between showers coming from the North and the South in spite of the symmetry of the detector. The observed asymmetry can be interpreted as a signature of the geomagnetic origin of the air shower radio emission. A simple linear dependence of the electric field with respect to vxB is used which reproduces the angular dependencies of the number of radio events and their electric polarity.Comment: 9 pages, 15 figures, 1 tabl

    A feasibility study for the detection of weak electromagnetic signal/bursts with hard-limited arrays

    Get PDF
    "The objective of this report was to investigate the use of a noncoherent detector based on polarity-coincidence statistic. Two channel, polarity-coincidence and polarity-difference, statistics were analyzed. The signal, common to both channels, consists of sinusoidal bursts where the exact frequency of the signal is nearly known, but other parameters such as amplitude, phase, and pulse starting time are unknown. The noise inputs are dependent, narrow band, Markov processes. It is shown that the performance depends not only on the signal uncertainties, but on the precise shape of the cross-correlation functions between the noise inputs. By using two polarity-difference statistics in addition to the polarity-coincidence statistic, it is shown that the decrease in performance, as well as the cost of hard limiting due to correlated inputs, can be made small." - NIOSHTIC-2NIOSHTIC no. 10003948Contract J031803

    The asymptotic relative efficiency of mixed statistical tests

    Get PDF
    Mixed statistical tests are described. It is shown that these tests have a much higher efficiency than conventionally used statistics such as the sign test and polarity coincidence correlation without the high operational complexity of the Wilcoxon, Mann-Whitney, Kendall\tau, or Fisher-Yates: Terry-Hoeffding tests

    High Performance Data Acquisition and Analysis Routines for the Nab Experiment

    Get PDF
    Probes of the Standard Model of particle physics are pushing further and further into the so-called “precision frontier”. In order to reach the precision goals of these experiments, a combination of elegant experimental design and robust data acquisition and analysis is required. Two experiments that embody this philosophy are the Nab and Calcium-45 experiments. These experiments are probing the understanding of the weak interaction by examining the beta decay of the free neutron and Calcium-45 respectively. They both aim to measure correlation parameters in the neutron beta decay alphabet, a and b. The parameter a, the electron-neutrino correlation coefficient, is sensitive to λ, the ratio of the axial-vector and vector coupling strengths in the decay of the free neutron. This parameter λ, in tandem with a precision measurement of the neutron lifetime τ , provides a measurement of the matrix element Vud from the CKM quark mixing matrix. The CKM matrix, as a rotation matrix, must be unitary. Probes of Vud and Vus in recent years have revealed tension in this unitarity at the 2.2σ level. The measurement of a via decay of free cold neutrons serves as an additional method of extraction for Vud that is sensitive to a different set of systematic effects and as such is an excellent probe into the source of the deviation from unitarity. The parameter b, the Fierz interference term, appears as a distortion in the mea- sured electron energy spectra from beta decay. This parameter, if non-zero, would indicate the existence of Scalar and/or Tensor couplings in the Weak interaction which according to the Standard Model is purely Vector minus Axial-Vector. This is therefore a search for physics beyond the standard model, BSM, physics search. The Nab and Calcium-45 experiments probe these parameters with a combination of elegant experimental design and brute force collection and analysis of large amounts of digitized detector data. These datasets, particularly in the case of the Nab experiment, are anticipated to span multiple petabytes of data and will require high performance online analysis and precision offline analysis routines in order to reach the experimental goals. Of particular note are the requirements for better than 3 keV energy resolution and an understanding of the uncertainty in the mean timing bias for the detected particles within 300 ps. Presented in this dissertation is an overview of the experiments and their design, a description of the data acquisition systems and analysis routines that have been developed to support the experiments, and a discussion of the data analysis performed for the Calcium-45 experiment

    Measurement of the Michel Parameter xi" in Polarized Muon Decay and Implications on Exotic Couplings of the Leptonic Weak Interaction

    Full text link
    The Michel parameter xi" has been determined from a measurement of the longitudinal polarization of positrons emitted in the decay of polarized and depolarized muons. The result, xi" = 0.981 +- 0.045stat +- 0.003syst, is consistent with the Standard Model prediction of unity, and provides an order of magnitude improvement in the relative precision of this parameter. This value sets new constraints on exotic couplings beyond the dominant V-A description of the leptonic weak interaction.Comment: 15 pages, 16 figures, 3 tables; submitted to Phys. Rev.

    Digital pulse-shape discrimination of fast neutrons and gamma rays

    Full text link
    Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADC's were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.Comment: 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in Physics Research

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep

    Get PDF
    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double log representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using more reliable cumulative distribution functions (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.Comment: In press in: Frontiers in Physiology, 2012, special issue "Critical Brain Dynamics" (Edited by He BY, Daffertshofer A, Boonstra TW); 33 pages, 13 figures. 3 table
    corecore