3 research outputs found

    Retinoblastoma gene mutations in primary human bladder cancer.

    Get PDF
    Inactivation of the retinoblastoma (RB) gene is known to be implicated in the pathogenesis of several types of human cancers. Since structural alterations of the RB gene have not been well examined in human bladder cancer, we looked for mutations in the entire coding region of this gene using polymerase chain reaction (PCR) and single-strand conformational polymorphism analysis of RNA. We also examined allelic loss of the RB gene using PCR-based restriction fragment length polymorphism analysis. Of 30 samples obtained from patients with bladder cancer, eight (27%) were found to have RB gene mutations. DNA sequencing of the PCR products revealed five cases with single point mutations and three cases with small deletions. These mutations included one (10%) of ten low-grade (grade 1) tumours, four (50%) of eight intermediate-grade (grade 2) tumours and three (25%) of 12 high-grade (grade 3) tumours. Likewise, mutations were found in four (21%) of 19 superficial (pTa and pT1) tumours and four (36%) of 11 invasive (pT2 or greater) tumours. In 15 informative cases, loss of heterozygosity at the RB locus was shown in five cases (33%), three cases with RB mutations and two without them. These results suggest that RB gene mutations are involved in low-grade and superficial bladder cancers as well as in high-grade and invasive cancers

    Overexpression of E2F1 associated with LOH at RB locus and hyperphosphorylation of RB in non-small cell lung carcinoma

    Get PDF
    金沢大学大学院医学系研究科保健学専攻Purpose E2F1 plays a critical role in cell proliferation, and its function is controlled by the retinoblastoma (RB) protein. We examined the expression of E2F1 and the aberration of RB gene and protein to elucidate what factors contribute to the overexpression of E2F1 in non-small cell lung carcinomas. Methods The expression level of E2F1 in tissues of non-small cell lung carcinomas was measured by means of quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. For RB, we examined loss of heterozygosity (LOH) by PCR-restriction fragment length polymorphism and a variable number of tandem repeats, and protein expression by immunohistochemistry. Results Fifteen cases of carcinoma (46%) showed high transcription levels of E2F1 gene. Immunohistochemically, almost all (14 of 15) cases overexpressing E2F1 mRNA were positive for E2F1 protein. LOH at the RB locus was found in 13 of 30 informative cases. In 13 cases with LOH, ten showed overexpression of E2F1 mRNA and protein. Immunohistochemical positivity for phosphorylated RB protein was also closely correlated with overexpression of E2F1. Conclusions Our results suggest that overexpression of E2F1, induced both by LOH at the RB locus and anomalous phosphorylation of the RB protein, is involved in the development of non-small cell lung carcinoma
    corecore