14,970 research outputs found

    Aerospace Medicine and Biology: A continuing bibliography (supplement 221)

    Get PDF
    This bibliography lists 127 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1981

    3D Sensor Placement and Embedded Processing for People Detection in an Industrial Environment

    Get PDF
    Papers I, II and III are extracted from the dissertation and uploaded as separate documents to meet post-publication requirements for self-arciving of IEEE conference papers.At a time when autonomy is being introduced in more and more areas, computer vision plays a very important role. In an industrial environment, the ability to create a real-time virtual version of a volume of interest provides a broad range of possibilities, including safety-related systems such as vision based anti-collision and personnel tracking. In an offshore environment, where such systems are not common, the task is challenging due to rough weather and environmental conditions, but the result of introducing such safety systems could potentially be lifesaving, as personnel work close to heavy, huge, and often poorly instrumented moving machinery and equipment. This thesis presents research on important topics related to enabling computer vision systems in industrial and offshore environments, including a review of the most important technologies and methods. A prototype 3D sensor package is developed, consisting of different sensors and a powerful embedded computer. This, together with a novel, highly scalable point cloud compression and sensor fusion scheme allows to create a real-time 3D map of an industrial area. The question of where to place the sensor packages in an environment where occlusions are present is also investigated. The result is algorithms for automatic sensor placement optimisation, where the goal is to place sensors in such a way that maximises the volume of interest that is covered, with as few occluded zones as possible. The method also includes redundancy constraints where important sub-volumes can be defined to be viewed by more than one sensor. Lastly, a people detection scheme using a merged point cloud from six different sensor packages as input is developed. Using a combination of point cloud clustering, flattening and convolutional neural networks, the system successfully detects multiple people in an outdoor industrial environment, providing real-time 3D positions. The sensor packages and methods are tested and verified at the Industrial Robotics Lab at the University of Agder, and the people detection method is also tested in a relevant outdoor, industrial testing facility. The experiments and results are presented in the papers attached to this thesis.publishedVersio

    Aerospace Medicine and Biology: A continuing bibliography, supplement 191

    Get PDF
    A bibliographical list of 182 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1979 is presented

    Manoeuvring drone (Tello Talent) using eye gaze and or fingers gestures

    Get PDF
    The project aims to combine hands and eyes to control a Tello Talent drone based on computer vision, machine learning and an eye tracking device for gaze detection and interaction. The main purpose of this project is gaming, experimental and educational for next coming generation, in addition it is very useful for the peoples who cannot use their hands, they can maneuver the drone by their eyes movement, and hopefully this will bring them some fun. The idea of this project is inspired by the progress and development in the innovative technologies such as machine learning, computer vision and object detection that offer a large field of applications which can be used in diverse domains, there are many researcher are improving, instructing and innovating the new intelligent manner for controlling the drones by combining computer vision, machine learning, artificial intelligent, etc. This project can help anyone even the people who they don¿t have any prior knowledge of programming or Computer Vision or theory of eye tracking system, they learn the basic knowledge of drone concept, object detection, programing, and integrating different hardware and software involved, then playing. As a final objective, they can able to build simple application that can control the drones by using movements of hands, eyes or both, during the practice they should take in consideration the operating condition and safety required by the manufacturers of drones and eye tracking device. The concept of Tello Talent drone is based on a series of features, functions and scripts which are already been developed, embedded in autopilot memories and are accessible by users via an SDK protocol. The SDK is used as an easy guide to developing simple and complex applications; it allows the user to develop several flying mission programs. There are different experiments were studied for checking which scenario is better in detecting the hands movement and exploring the keys points in real-time with low computing power computer. As a result, I find that the Google artificial intelligent research group offers an open source platform dedicated for developing this application; the platform is called MediaPipe based on customizable machine learning solution for live streaming video. In this project the MediaPipe and the eye tracking module are the fundamental tools for developing and realizing the application

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 355)

    Get PDF
    This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav
    corecore