1,075 research outputs found

    A Polar Map Based Approach Using Retinal Fundus Images for Glaucoma Detection

    Get PDF
    Cup-to-disc ratio is commonly used as an important parameter for glaucoma screening, involving segmentation of the optic cup on fundus images. We propose a novel polar map representation of the optic disc, using a combination of supervised and unsupervised cup segmentation techniques, for detection of glaucoma. Instead of performing hard thresholding on the segmentation output to extract the cup, we consider the cup confidence scores inside the disc to construct a polar map, and extract sector-wise features for learning a glaucoma risk probability (GRP) for the image. We compare the performance of GRP vis-à-vis the cup-to-disc ratio (CDR). On an evaluation dataset of 100 images from the publicly available RIM-ONE database, our method achieves 82% sensitivity at 84% specificity, and 96% sensitivity at 60% specificity (AUC of 0.8964). Experiments indicate that the polar map based method can provide a more discriminatory glaucoma risk probability score compared to CDR

    IMPROVED AUTOMATIC DETECTION OF GLAUCOMA USING CUP-TO-DISK RATIO AND HYBRID CLASSIFIERS.

    Get PDF
    Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics

    Efficient Computer-Aided Techniques to Detect Glaucoma

    Get PDF
    A survey of the World Health Organization has revealed that retinal eye disease Glaucoma is the second leading cause for blindness worldwide. It is a disease which will steals the vision of the patient without any warning or symptoms. About half of the World Glaucoma Patients are estimated to be in Asia. Hence, for social and economic reasons, Glaucoma detection is necessary in preventing blindness and reducing the cost of surgical treatment of the disease. The objective of the chapter is to predict and detect Glaucoma efficiently using image processing techniques. We have developed an efficient computer-aided Glaucoma detection system to classify a fundus image as either normal or glaucomatous image based on the structural features of the fundus image such as cup-to-disc ratio (CDR), rim-to-disc ratio (RDR), superior and inferior neuroretinal rim thicknesses, vessel structure-based features, and distribution of texture features in the fundus images. An automated clinical support system is developed to assist the ophthalmologists to identify the persons who are at risk in the early stages of the disease, monitor the progression of the disease, and minimize the examination time

    TPU Cloud-Based Generalized U-Net for Eye Fundus Image Segmentation

    Get PDF
    Medical images from different clinics are acquired with different instruments and settings. To perform segmentation on these images as a cloud-based service we need to train with multiple datasets to increase the segmentation independency from the source. We also require an ef cient and fast segmentation network. In this work these two problems, which are essential for many practical medical imaging applications, are studied. As a segmentation network, U-Net has been selected. U-Net is a class of deep neural networks which have been shown to be effective for medical image segmentation. Many different U-Net implementations have been proposed.With the recent development of tensor processing units (TPU), the execution times of these algorithms can be drastically reduced. This makes them attractive for cloud services. In this paper, we study, using Google's publicly available colab environment, a generalized fully con gurable Keras U-Net implementation which uses Google TPU processors for training and prediction. As our application problem, we use the segmentation of Optic Disc and Cup, which can be applied to glaucoma detection. To obtain networks with a good performance, independently of the image acquisition source, we combine multiple publicly available datasets (RIM-One V3, DRISHTI and DRIONS). As a result of this study, we have developed a set of functions that allow the implementation of generalized U-Nets adapted to TPU execution and are suitable for cloud-based service implementation.Ministerio de Economía y Competitividad TEC2016-77785-
    corecore