1,277 research outputs found

    Monitoring Partially Synchronous Distributed Systems using SMT Solvers

    Full text link
    In this paper, we discuss the feasibility of monitoring partially synchronous distributed systems to detect latent bugs, i.e., errors caused by concurrency and race conditions among concurrent processes. We present a monitoring framework where we model both system constraints and latent bugs as Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of latent bugs using an SMT solver. We demonstrate the feasibility of our framework using both synthetic applications where latent bugs occur at any time with random probability and an application involving exclusive access to a shared resource with a subtle timing bug. We illustrate how the time required for verification is affected by parameters such as communication frequency, latency, and clock skew. Our results show that our framework can be used for real-life applications, and because our framework uses SMT solvers, the range of appropriate applications will increase as these solvers become more efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime Verification (RV) 201

    A Distributed Relation Detection Approach in the Internet of Things

    Get PDF

    Necessary and Sufficient Conditions on Partial Orders for Modeling Concurrent Computations

    Full text link
    Partial orders are used extensively for modeling and analyzing concurrent computations. In this paper, we define two properties of partially ordered sets: width-extensibility and interleaving-consistency, and show that a partial order can be a valid state based model: (1) of some synchronous concurrent computation iff it is width-extensible, and (2) of some asynchronous concurrent computation iff it is width-extensible and interleaving-consistent. We also show a duality between the event based and state based models of concurrent computations, and give algorithms to convert models between the two domains. When applied to the problem of checkpointing, our theory leads to a better understanding of some existing results and algorithms in the field. It also leads to efficient detection algorithms for predicates whose evaluation requires knowledge of states from all the processes in the system
    • …
    corecore