8 research outputs found

    Individual camera device identification from JPEG images

    Get PDF
    International audienceThe goal of this paper is to investigate the problem of source camera device identification for natural images in JPEG format. We propose an improved signal-dependent noise model describing the statistical distribution of pixels from a JPEG image. The noise model relies on the heteroscedastic noise parameters, that relates the variance of pixels’ noise with the expectation considered as unique fingerprints. It is also shown in the present paper that, non-linear response of pixels can be captured by characterizing the linear relation because those heteroscedastic parameters, which are used to identify source camera device. The identification problem is cast within the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test (LRT) is presented and its performance is theoretically established. The statistical performance of LRT serves as an upper bound of the detection power. In a practical identification, when the nuisance parameters are unknown, two generalized LRTs based on estimation of those parameters are established. Numerical results on simulated data and real natural images highlight the relevance of our proposed approach. While those results show a first positive proof of concept of the method, it still requires to be extended for a relevant comparison with PRNU-based approaches that benefit from years of experience

    Camera model identification based on the generalized noise model in natural images

    Get PDF
    International audienceThe goal of this paper is to design a statistical test for the camera model identification problem. The approach is based on the generalized noise model that is developed by following the image processing pipeline of the digital camera. More specifically, this model is given by starting from the heteroscedastic noise model that describes the linear relation between the expectation and variance of a RAW pixel and taking into account the non-linear effect of gamma correction.The generalized noise model characterizes more accurately a natural image in TIFF or JPEG format. The present paper is similar to our previous work that was proposed for camera model identification from RAW images based on the heteroscedastic noise model. The parameters that are specified in the generalized noise model are used as camera fingerprint to identify camera models. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its statistical performances are theoretically established. In practice when the model parameters are unknown, two Generalized Likelihood Ratio Tests are designed to deal with this difficulty such that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated images and real natural JPEG images highlight the relevance of the proposed approac

    Camera model identification based on DCT coefficient statistics

    Get PDF
    International audienceThe goal of this paper is to design a statistical test for the camera model identification problem from JPEG images. The approach relies on the camera fingerprint extracted in the Discrete Cosine Transform (DCT) domain based on the state-of-the-art model of DCT coefficients. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its performances are theoretically established. For a practical use, two Generalized Likelihood Ratio Tests are designed to deal with unknown model parameters such that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated and real JPEG images highlight the relevance of the proposed approach

    Détection statistique d'information cachée dans des images naturelles

    Get PDF
    La nécessité de communiquer de façon sécurisée n est pas chose nouvelle : depuis l antiquité des méthodes existent afin de dissimuler une communication. La cryptographie a permis de rendre un message inintelligible en le chiffrant, la stéganographie quant à elle permet de dissimuler le fait même qu un message est échangé. Cette thèse s inscrit dans le cadre du projet "Recherche d Informations Cachées" financé par l Agence Nationale de la Recherche, l Université de Technologie de Troyes a travaillé sur la modélisation mathématique d une image naturelle et à la mise en place de détecteurs d informations cachées dans les images. Ce mémoire propose d étudier la stéganalyse dans les images naturelles du point de vue de la décision statistique paramétrique. Dans les images JPEG, un détecteur basé sur la modélisation des coefficients DCT quantifiés est proposé et les calculs des probabilités du détecteur sont établis théoriquement. De plus, une étude du nombre moyen d effondrements apparaissant lors de l insertion avec les algorithmes F3 et F4 est proposée. Enfin, dans le cadre des images non compressées, les tests proposés sont optimaux sous certaines contraintes, une des difficultés surmontées étant le caractère quantifié des donnéesThe need of secure communication is not something new: from ancient, methods exist to conceal communication. Cryptography helped make unintelligible message using encryption, steganography can hide the fact that a message is exchanged.This thesis is part of the project "Hidden Information Research" funded by the National Research Agency, Troyes University of Technology worked on the mathematical modeling of a natural image and creating detectors of hidden information in digital pictures.This thesis proposes to study the steganalysis in natural images in terms of parametric statistical decision. In JPEG images, a detector based on the modeling of quantized DCT coefficients is proposed and calculations of probabilities of the detector are established theoretically. In addition, a study of the number of shrinkage occurring during embedding by F3 and F4 algorithms is proposed. Finally, for the uncompressed images, the proposed tests are optimal under certain constraints, a difficulty overcome is the data quantizationTROYES-SCD-UTT (103872102) / SudocSudocFranceF

    Statistical decision methods in the presence of linear nuisance parameters and despite imaging system heteroscedastic noise: Application to wheel surface inspection

    Get PDF
    International audienceThis paper proposes a novel method for fully automatic anomaly detection on objects inspected using an imaging system. In order to address the inspection of a wide range of objects and to allow the detection of any anomaly, an original adaptive linear parametric model is proposed; The great flexibility of this adaptive model offers highest accuracy for a wide range of complex surfaces while preserving detection of small defects. In addition, because the proposed original model remains linear it allows the application of the hypothesis testing theory to design a test whose statistical performances are analytically known. Another important novelty of this paper is that it takes into account the specific heteroscedastic noise of imaging systems. Indeed, in such systems, the noise level depends on the pixels’ intensity which should be carefully taken into account for providing the proposed test with statistical properties. The proposed detection method is then applied for wheels surface inspection using an imaging system. Due to the nature of the wheels, the different elements are analyzed separately. Numerical results on a large set of real images show both the accuracy of the proposed adaptive model and the sharpness of the ensuing statistical test

    Challenges and Open Questions of Machine Learning in Computer Security

    Get PDF
    This habilitation thesis presents advancements in machine learning for computer security, arising from problems in network intrusion detection and steganography. The thesis put an emphasis on explanation of traits shared by steganalysis, network intrusion detection, and other security domains, which makes these domains different from computer vision, speech recognition, and other fields where machine learning is typically studied. Then, the thesis presents methods developed to at least partially solve the identified problems with an overall goal to make machine learning based intrusion detection system viable. Most of them are general in the sense that they can be used outside intrusion detection and steganalysis on problems with similar constraints. A common feature of all methods is that they are generally simple, yet surprisingly effective. According to large-scale experiments they almost always improve the prior art, which is likely caused by being tailored to security problems and designed for large volumes of data. Specifically, the thesis addresses following problems: anomaly detection with low computational and memory complexity such that efficient processing of large data is possible; multiple-instance anomaly detection improving signal-to-noise ration by classifying larger group of samples; supervised classification of tree-structured data simplifying their encoding in neural networks; clustering of structured data; supervised training with the emphasis on the precision in top p% of returned data; and finally explanation of anomalies to help humans understand the nature of anomaly and speed-up their decision. Many algorithms and method presented in this thesis are deployed in the real intrusion detection system protecting millions of computers around the globe

    Detection of JSteg algorithm using hypothesis testing theory and a statistical model with nuisance parameters

    No full text
    International audienceThis paper investigates the statistical detection of data hid- den within DCT coefficients of JPEG images using a Lapla- cian distribution model. The main contributions is twofold. First, this paper proposes to model the DCT coefficients using a Laplacian distribution but challenges the usual as- sumption that among a sub-band all the coefficients follow are independent and identically distributed (i. i. d. ). In this paper it is assumed that the distribution parameters change from DCT coefficient to DCT coefficient. Second this pa- per applies this model to design a statistical test, based on hypothesis testing theory, which aims at detecting data hid- den within DCT coefficient with the JSteg algorithm. The proposed optimal detector carefully takes into account the distribution parameters as nuisance parameters. Numerical results on simulated data as well as on numerical images database show the relevance of the proposed model and the good performance of the ensuing test

    Detection of JSteg Algorithm Using Hypothesis Testing Theory and a Statistical Model with Nuisance Parameters

    No full text
    ABSTRACT This paper investigates the statistical detection of data hidden within DCT coefficients of JPEG images using a Laplacian distribution model. The main contributions is twofold. First, this paper proposes to model the DCT coefficients using a Laplacian distribution but challenges the usual assumption that among a sub-band all the coefficients follow are independent and identically distributed (i. i. d. ). In this paper it is assumed that the distribution parameters change from DCT coefficient to DCT coefficient. Second this paper applies this model to design a statistical test, based on hypothesis testing theory, which aims at detecting data hidden within DCT coefficient with the JSteg algorithm. The proposed optimal detector carefully takes into account the distribution parameters as nuisance parameters. Numerical results on simulated data as well as on numerical images database show the relevance of the proposed model and the good performance of the ensuing test
    corecore