8,269 research outputs found

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    No full text
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE

    Successive interference cancellation schemes for time-reversal space-time block codes

    Get PDF
    In this paper, we propose two simple signal detectors that are based on successive interference cancellation (SIC) for time-reversal space-time block codes to combat intersymbol interference in frequency-selective fading environments. The main idea is to treat undetected symbols and noise together as Gaussian noise with matching mean and variance and use the already-detected symbols to help current signal recovery. The first scheme is a simple SIC signal detector whose ordering is based on the channel powers. The second proposed SIC scheme, which is denoted parallel arbitrated SIC (PA-SIC), is a structure that concatenates in parallel a certain number of SIC detectors with different ordering sequences and then combines the soft output of each individual SIC to achieve performance gains. For the proposed PA-SIC, we describe the optimal ordering algorithm as a combinatorial problem and present a low-complexity ordering technique for signal decoding. Simulations show that the new schemes can provide a performance that is very close to maximum-likelihood sequence estimation (MLSE) decoding under time-invariant conditions. Results for frequency-selective and doubly selective fading channels show that the proposed schemes significantly outperform the conventional minimum mean square error-(MMSE) like receiver and that the new PA-SIC performs much better than the proposed conventional SIC and is not far in performance from the MLSE. The computational complexity of the SIC algorithms is only linear with the number of transmit antennas and transmission rates, which is very close to the MMSE and much lower than the MLSE. The PA-SIC also has a complexity that is linear with the number of SIC components that are in parallel, and the optimum tradeoff between performance and complexity can be easily determined according to the number of SIC detectors

    Chaotic communications over radio channels

    Get PDF

    New receivers for DS-SS in time variant multipath channels based on the PN alignment concept

    Get PDF
    We present new combined blind equalization and detection schemes for a DS-SS system. The new proposed algorithms improve the bit error rate compared to traditional RAKE receivers in time-variant channels with multipath. This improvement is obtained in both simulated and a real ionospheric HF link. Its very low computational complexity makes them suitable to be implemented in real receivers.Peer ReviewedPostprint (published version

    Wavelet transform - artificial neural network receiver with adaptive equalisation for a diffuse indoor optical wireless OOK link

    Get PDF
    This paper presents an alternative approach for signal detection and equalization using the continuous wavelet transform (CWT) and the artificial neural network (ANN) in diffuse indoor optical wireless links (OWL). The wavelet analysis is used for signal preprocessing (feature extraction) and the ANN for signal detection. Traditional receiver architectures based on matched filter (MF) experience significant performance degradation in the presence of artificial light interference (ALI) and multipath induced intersymbol interference (ISI). The proposed receiver structure reduces the effect of ALI and ISI by selecting a particular scale of CWT that corresponds to the desired signal and classifying the signal into binary 1 and 0 based on an observation vector. By selecting particular scales corresponding to the signal, the effect of ALI is reduced. We show that there is little variation when using 30 and 5 neurons in the first layer, with one layer ANN model showing a consistently worse BER performance than other models, whilst the 15 neuron model show some behaviour anomalies from a BER of approximately 10-3. The simulation results show that the Wavelet-ANN architecture outperforms the traditional MF based receiver even with the filter is matched to the ISI affected pulse shape. The Wavelet-ANN receiver is also capable of providing a bit error rate (BER) performance comparable to the equalized forms of traditional receiver structure

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201
    corecore