12 research outputs found

    Study of Different Deep Learning Approach with Explainable AI for Screening Patients with COVID-19 Symptoms: Using CT Scan and Chest X-ray Image Dataset

    Full text link
    The outbreak of COVID-19 disease caused more than 100,000 deaths so far in the USA alone. It is necessary to conduct an initial screening of patients with the symptoms of COVID-19 disease to control the spread of the disease. However, it is becoming laborious to conduct the tests with the available testing kits due to the growing number of patients. Some studies proposed CT scan or chest X-ray images as an alternative solution. Therefore, it is essential to use every available resource, instead of either a CT scan or chest X-ray to conduct a large number of tests simultaneously. As a result, this study aims to develop a deep learning-based model that can detect COVID-19 patients with better accuracy both on CT scan and chest X-ray image dataset. In this work, eight different deep learning approaches such as VGG16, InceptionResNetV2, ResNet50, DenseNet201, VGG19, MobilenetV2, NasNetMobile, and ResNet15V2 have been tested on two dataset-one dataset includes 400 CT scan images, and another dataset includes 400 chest X-ray images studied. Besides, Local Interpretable Model-agnostic Explanations (LIME) is used to explain the model's interpretability. Using LIME, test results demonstrate that it is conceivable to interpret top features that should have worked to build a trust AI framework to distinguish between patients with COVID-19 symptoms with other patients.Comment: This is a work in progress, it should not be relied upon without context to guide clinical practice or health-related behavior and should not be reported in news media as established information without consulting multiple experts in the fiel

    COVID-19 Mortality Prediction Using Machine Learning-Integrated Random Forest Algorithm Under Varying Patient Frailty

    Get PDF
    The abundance of type and quantity of available data in the healthcare field has led many to utilize machine learning approaches to keep up with this influx of data. Data pertaining to COVID-19 is an area of recent interest. The widespread influence of the virus across the United States creates an obvious need to identify groups of individuals that are at an increased risk of mortality from the virus. We propose a so-called clustered random forest approach to predict COVID-19 patient mortality. We use this approach to examine the hidden heterogeneity of patient frailty by examining demographic information for COVID-19 patients. We find that our clustered random forest approach attains predictive performance comparable to other published methods. We also find that follow-up analysis with neural network modeling and k-means clustering provide insight into the type and magnitude of mortality risks associated with COVID-19

    Recognition Covid-19 cases using deep type-2 fuzzy neural networks based on chest X-ray image

    Get PDF
    Today, the new coronavirus (Covid-19) has become a major global epidemic. Every day, a large proportion of the world's population is infected with the Covid-19 virus, and a significant proportion of those infected dies as a result of this virus. Because of the virus's infectious nature, prompt diagnosis, treatment, and quarantine are considered critical. In this paper, an automated method for detecting Covid-19 from chest X-ray images based on deep learning networks is presented. For the proposed deep learning network, a combination of convolutional neural networks with type-2 fuzzy activation function is used to deal with noise and uncertainty. In this study, Generative Adversarial Networks (GANs) were also used for data augmentation. Furthermore, the proposed network is resistant to Gaussian noise up to 10 dB. The final accuracy for the classification of the first scenario (healthy and Covid-19) and the second scenario (healthy, Pneumonia and Covid-19) is about 99% and 95%, respectively. In addition, the results of the proposed method in terms of accuracy, precision, sensitivity, and specificity in comparison with recent research are promising. For example, the proposed method for classifying the first scenario has 100% and 99% sensitivity and specificity, respectively. In the field of medical application, the proposed method can be used as a physician's assistant during patient treatment
    corecore