2,128 research outputs found

    Circulating Tumor Cells Identify Patients with Super-High-Risk Non-Muscle-Invasive Bladder Cancer: Updated Outcome Analysis of a Prospective Single-Center Trial

    Get PDF
    Clinical behavior of non-muscle-invasive bladder cancer (NMIBC) is largely unpredictable, and even patients treated according to European Association of Urology recommendations have a heterogeneous prognosis. High-grade T1 (HGT1) bladder cancer is the highest-risk subtype of NMIBC, with an almost 40% rate of recurrence and 20% of progression at 5 years. Nomograms predicting risk of recurrence, progression, and cancer-specific survival (CSS) are not available specifically within HGT1 bladder cancer, and the identification of robust prognostic biomarkers to better guide therapeutic strategies in this subgroup of patients is of paramount importance. Strategies to identify putative biomarkers in liquid biopsies from blood and urine collected from patients with bladder cancer have been intensively studied in the last few years

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Machine learning and data mining frameworks for predicting drug response in cancer:An overview and a novel <i>in silico</i> screening process based on association rule mining

    Get PDF

    Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication

    Get PDF
    Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma.Peer reviewe

    The immune microenvironment in mantle cell lymphoma : Targeted liquid and spatial proteomic analyses

    Get PDF
    The complex interplay of the tumour and immune cells affects tumour growth, progression, and response to treatment. Restorationof effective immune response forms the basis of onco-immunology, which further enabled the development of immunotherapy. Inthe era of precision medicine, pin-pointing patient biological heterogeneity especially in relation to patient-specific immunemicroenvironment is a necessity for the discovery of novel biomarkers and for development of patient stratification tools for targetedtherapeutics. Mantle cell lymphoma (MCL) is a rare and aggressive subtype of B-cell lymphoma with poor survival and high relapserates. Previous investigations of MCL have largely focused on the tumour itself and explorations of the immune microenvironmenthave been limited. This thesis and the included five papers, investigates multiple aspects of the immune microenvironment withrespect to proteomic analysis performed on tissue and liquid biopsies of diagnostic and relapsed/refractory (R/R) MCL cohorts.Analyses based on liquid biopsies (serum) in particular are relevant for aggressive cases such as in relapse, where invasiveprocedures for extracting tissues is not recommended. Thus, paper I-II probes the possibility of using serum for treatment andoutcome-associated biomarker discovery in R/R MCL, using a targeted affinity-based protein microarray platform quantifyingimmune-regulatory and tumor-secretory proteins in sera. Analysis performed in paper I using pre-treatment samples, identifies 11-plex biomarker signature (RIS – relapsed immune signature) associated with overall survival. Further integration of RIS with mantlecell lymphoma international prognostic index (MIPI) led to the development of MIPIris index for the stratification of R/R MCL intothree risk groups. Moreover, longitudinal analysis can be important in understanding how patient respond to treatment and thiscan further guide therapeutic interventions. Thus, paper II is a follow-up study wherein longitudinal analyses was performed onpaired samples collected at pre-treatment (baseline) and after three months of chemo-immunotherapy (on-treatment). We showhow genetic aberrations can influence systemic profiles and thus integrating genetic information can be crucial for treatmentselection. Furthermore, we observe that the inter-patient heterogeneity associated with absolute values can be circumvented byusing velocity of change to capture general changes over time in groups of patients. Thus, using velocity of change in serumproteins between pre- and on-treatment samples identified response biomarkers associated with minimal residual disease andprogression. While exploratory analysis using high dimensional omics-based data can be important for accelerating discovery,translating such information for clinical utility is a necessity. Thus, in paper III, we show how serum quantification can be usedcomplementary tissue-identified prognostic biomarkers and this can enable faster clinical implementation. Presence of CD163+M2-like macrophages has shown to be associated with poor outcome in MCL tissues. We show that higher expression of sCD163levels in sera quantified using ELISA, is also associated with poor outcome in diagnostic and relapsed MCL. Furthermore, wesuggest a cut-off for sCD163 levels that can be used for clinical utility. Further exploration of the dynamic interplay of tumourimmunemicroenvironment is now possible using spatial resolved omics for tissue-based analysis. Thus, in paper IV and V, weanalyse cell-type specific proteomic data collected from tumour and immune cells using GeoMx™ digital spatial profiler. In paperIV, we show that presence as well as spatial localization of CD163+ macrophage with respect to tumour regions impactsmacrophage phenotypic profiles. Further modulation in the profile of surrounding tumour and T-cells is observed whenmacrophages are present in the vicinity. Based on this analysis, we suggest MAPK pathway as a potential therapeutic target intumours with CD163+ macrophages. Immune composition can be defined not just by the type of cells, but also with respect tofrequency and spatial localization and this is explored in paper V with respect to T-cell subtypes. Thus, in paper V, we optimizeda workflow of multiplexed immunofluorescence image segmentation that allowed us to extract cell metrics for four subtypes ofCD3+ T-cells. Using this data, we show that higher infiltration of T-cells is associated with a positive outcome in MCL. Moreover,by combining image derived metrics to cell specific spatial omics data, we were able to identify immunosuppressivemicroenvironment associated with highly infiltrated tumours and suggests new potential targets of immunotherapy with respect toIDO1, GITR and STING. In conclusion, this thesis explores systemic and tumor-associated immune microenvironment in MCL, fordefining patient heterogeneity, developing methods of patient stratification and for identifying novel and actionable biomarkers

    Platelet Diagnostics:A novel liquid biomarker

    Get PDF
    The aim of this thesis is to find a novel liquid biomarker for the detection of cancer and to optimize treatment. The first chapter gives an introduction to the oncology biomarker field and focuses on platelets and their role in cancer. In part 1, we evaluate extracellular vesicles (EVs). EVs are small vesicles released by all types of cells, including tumor cells, into the circulation. They carry protein kinases and can be isolated from plasma. We demonstrate that AKT and ERK kinase protein levels in EVs reflect the cellular expression levels and treatment with kinase inhibitors alters their concentration, depending on the clinical response to the drug. Therefore, EVs may provide a promising biomarker biosource for monitoring of treatment responses. Part 2 starts with reviews describing the function and role of platelets in greater depth. Chapter 3 focusses on thrombocytogenesis and several biological processes in which platelets play a role. Furthermore, the RNA processing machineries harboured by platelets are discussed. Both chapter 3 and 4 evaluate the change platelets undergo after being exposed to tumor and its environment. The exchange of biomolecules with tumor cells results in educated platelets, so-called tumor educated platelets (TEPs). TEPs play a role in several hallmarks of cancer and have the ability to respond to systemic alterations making them an interesting biomarker. In chapter 5 the diagnostic potential of platelets is first discussed. We determine their potential by sequencing the RNA of 283 platelet samples, of which 228 are patients with cancer, and 55 are healthy controls. We reach an accuracy of 96%. Furthermore, we are able to pinpoint the location of the primary tumor with an accuracy of 71%. In part 3, our developed thromboSeq platform is taken to the next level. Several potential confounding factors are taken into account such as age and comorbidity. We show that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels. In a validation cohort we apply these algorithms to non-small-cell lung cancer and reach an accuracy of 88% in late stage (n=518) and early-stage 81% accuracy. Finally, in chapter 7 we describe our wet- and dry-lab protocols in detail. This includes platelet RNA isolation, mRNA amplification, and preparation for next-generation sequencing. The dry-lab protocol describes the automated FASTQ file pre-processing to quantified gene counts, quality controls, data normalization and correction, and swarm intelligence-enhanced support vector machine (SVM) algorithm development. Part 4 focuses on central nervous system (CNS) malignancies especially on glioblastoma. Chapter 8 gives an overview of the different liquid biomarkers for diffuse glioma, the most common primary CNS malignancy. In chapter 9 we assess the specificity of the platelet education due to glioblastoma by comparing the RNA profile of TEPs from glioblastoma patients with a neuroinflammatory disease and brain metastasis patients. This results in a detection accuracy of 80%. Secondly, analysis of patients with glioblastoma versus healthy controls in an independent validation series provide a detection accuracy of 95%. Furthermore, we describe the potential value of platelets as a monitoring biomarker for patients with glioma, distinguishing pseudoprogression from real tumor progression. In part 5 thromboSeq is applied to breast cancer diagnostics both as a screening tool in the general population and in a high risk population, BRCA mutated women. In chapter 11 we first apply our technique to an inflammatory condition, multiple sclerosis (MS). Platelet RNA is used as input for the development of a diagnostic MS classifier capable of detecting MS with 80% accuracy in the independent validation series. In the final part we conclude this thesis with a general discussion of the main findings and suggestions for future research

    Teneurins: Role in Cancer and Potential Role as Diagnostic Biomarkers and Targets for Therapy

    Get PDF
    Teneurins have been identified in vertebrates as four different genes (TENM1-4), coding for membrane proteins that are mainly involved in embryonic and neuronal development. Genetic studies have correlated them with various diseases, including developmental problems, neurological disorders and congenital general anosmia. There is some evidence to suggest their possible involvement in cancer initiation and progression, and drug resistance. Indeed, mutations, chromosomal alterations and the deregulation of teneurins expression have been associated with several tumor types and patient survival. However, the role of teneurins in cancer-related regulatory networks is not fully understood, as both a tumor-suppressor role and pro-tumoral functions have been proposed, depending on tumor histotype. Here, we summarize and discuss the literature data on teneurins expression and their potential role in different tumor types, while highlighting the possibility of using teneurins as novel molecular diagnostic and prognostic biomarkers and as targets for cancer treatments, such as immunotherapy, in some tumors
    • …
    corecore