17,471 research outputs found

    Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection

    Full text link
    There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 127, April 1974

    Get PDF
    This special bibliography lists 279 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1974

    Estimating Carotid Pulse and Breathing Rate from Near-infrared Video of the Neck

    Full text link
    Objective: Non-contact physiological measurement is a growing research area that allows capturing vital signs such as heart rate (HR) and breathing rate (BR) comfortably and unobtrusively with remote devices. However, most of the approaches work only in bright environments in which subtle photoplethysmographic and ballistocardiographic signals can be easily analyzed and/or require expensive and custom hardware to perform the measurements. Approach: This work introduces a low-cost method to measure subtle motions associated with the carotid pulse and breathing movement from the neck using near-infrared (NIR) video imaging. A skin reflection model of the neck was established to provide a theoretical foundation for the method. In particular, the method relies on template matching for neck detection, Principal Component Analysis for feature extraction, and Hidden Markov Models for data smoothing. Main Results: We compared the estimated HR and BR measures with ones provided by an FDA-cleared device in a 12-participant laboratory study: the estimates achieved a mean absolute error of 0.36 beats per minute and 0.24 breaths per minute under both bright and dark lighting. Significance: This work advances the possibilities of non-contact physiological measurement in real-life conditions in which environmental illumination is limited and in which the face of the person is not readily available or needs to be protected. Due to the increasing availability of NIR imaging devices, the described methods are readily scalable.Comment: 21 pages, 15 figure

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Identification of cardiac signals in ambulatory ECG data

    Get PDF
    The Electrocardiogram (ECG) is the primary tool for monitoring heart function. ECG signals contain vital information about the heart which informs diagnosis and treatment of cardiac conditions. The diagnosis of many cardiac arrhythmias require long term and continuous ECG data, often while the participant engages in activity. Wearable ambulatory ECG (AECG) systems, such as the common Holter system, allow heart monitoring for hours or days. The technological trajectory of AECG systems aims towards continuous monitoring during a wide range of activities with data processed locally in real time and transmitted to a monitoring centre for further analysis. Furthermore, hierarchical decision systems will allow wearable systems to produce alerts or even interventions. These functions could be integrated into smartphones.A fundamental limitation of this technology is the ability to identify heart signal characteristics in ECG signals contaminated with high amplitude and non-stationary noise. Noise processing become more severe as activity levels increase, and this is also when many heart problems are present.This thesis focuses on the identification of heart signals in AECG data recorded during participant activity. In particular, it explored ECG filters to identify major heart conditions in noisy AECG data. Gold standard methods use Extended Kalman filters with extrapolation based on sum of Gaussian models. New methods are developed using linear Kalman filtering and extrapolation based on a sum of Principal Component basis signals. Unlike the gold standard methods, extrapolation is heartcycle by heartcycle. Several variants are explored where basic signals span one or two heartcycles, and applied to single or multi-channel ECG data.The proposed methods are extensively tested against standard databases or normal and abnormal ECG data and the performance is compared to gold standard methods. Two performance metrics are used: improvement in signal to noise ratio and the observability of clinically important features in the heart signal. In all tests the proposed method performs better, and often significantly better, than the gold standard methods. It is demonstrated that abnormal ECG signals can be identified in noisy AECG data

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974

    Communications Biophysics

    Get PDF
    Contains research objectives, summary of research and reports on two research project.National Institutes of Health (Grant 5 PO1 GM14940-03)National Institutes of Health (Grant 5 TO1 GM01555-03)National Aeronautics and Space Administration (Grant NGL 22-009-304

    Flexible Time Series Matching for Clinical and Behavioral Data

    Get PDF
    Time Series data became broadly applied by the research community in the last decades after a massive explosion of its availability. Nonetheless, this rise required an improvement in the existing analysis techniques which, in the medical domain, would help specialists to evaluate their patients condition. One of the key tasks in time series analysis is pattern recognition (segmentation and classification). Traditional methods typically perform subsequence matching, making use of a pattern template and a similarity metric to search for similar sequences throughout time series. However, real-world data is noisy and variable (morphological distortions), making a template-based exact matching an elementary approach. Intending to increase flexibility and generalize the pattern searching tasks across domains, this dissertation proposes two Deep Learning-based frameworks to solve pattern segmentation and anomaly detection problems. Regarding pattern segmentation, a Convolution/Deconvolution Neural Network is proposed, learning to distinguish, point-by-point, desired sub-patterns from background content within a time series. The proposed framework was validated in two use-cases: electrocardiogram (ECG) and inertial sensor-based human activity (IMU) signals. It outperformed two conventional matching techniques, being capable of notably detecting the targeted cycles even in noise-corrupted or extremely distorted signals, without using any reference template nor hand-coded similarity scores. Concerning anomaly detection, the proposed unsupervised framework uses the reconstruction ability of Variational Autoencoders and a local similarity score to identify non-labeled abnormalities. The proposal was validated in two public ECG datasets (MITBIH Arrhythmia and ECG5000), performing cardiac arrhythmia identification. Results indicated competitiveness relative to recent techniques, achieving detection AUC scores of 98.84% (ECG5000) and 93.32% (MIT-BIH Arrhythmia).Dados de séries temporais tornaram-se largamente aplicados pela comunidade científica nas últimas decadas após um aumento massivo da sua disponibilidade. Contudo, este aumento exigiu uma melhoria das atuais técnicas de análise que, no domínio clínico, auxiliaria os especialistas na avaliação da condição dos seus pacientes. Um dos principais tipos de análise em séries temporais é o reconhecimento de padrões (segmentação e classificação). Métodos tradicionais assentam, tipicamente, em técnicas de correspondência em subsequências, fazendo uso de um padrão de referência e uma métrica de similaridade para procurar por subsequências similares ao longo de séries temporais. Todavia, dados do mundo real são ruidosos e variáveis (morfologicamente), tornando uma correspondência exata baseada num padrão de referência uma abordagem rudimentar. Pretendendo aumentar a flexibilidade da análise de séries temporais e generalizar tarefas de procura de padrões entre domínios, esta dissertação propõe duas abordagens baseadas em Deep Learning para solucionar problemas de segmentação de padrões e deteção de anomalias. Acerca da segmentação de padrões, a rede neuronal de Convolução/Deconvolução proposta aprende a distinguir, ponto a ponto, sub-padrões pretendidos de conteúdo de fundo numa série temporal. O modelo proposto foi validado em dois casos de uso: sinais eletrocardiográficos (ECG) e de sensores inerciais em atividade humana (IMU). Este superou duas técnicas convencionais, sendo capaz de detetar os ciclos-alvo notavelmente, mesmo em sinais corrompidos por ruído ou extremamente distorcidos, sem o uso de nenhum padrão de referência nem métricas de similaridade codificadas manualmente. A respeito da deteção de anomalias, a técnica não supervisionada proposta usa a capacidade de reconstrução dos Variational Autoencoders e uma métrica de similaridade local para identificar anomalias desconhecidas. A proposta foi validada na identificação de arritmias cardíacas em duas bases de dados públicas de ECG (MIT-BIH Arrhythmia e ECG5000). Os resultados revelam competitividade face a técnicas recentes, alcançando métricas AUC de deteção de 93.32% (MIT-BIH Arrhythmia) e 98.84% (ECG5000)

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • …
    corecore