231 research outputs found

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends, Vision , and Challenges

    Full text link
    In recent years, the combination of artificial intelligence (AI) and unmanned aerial vehicles (UAVs) has brought about advancements in various areas. This comprehensive analysis explores the changing landscape of AI-powered UAVs and friendly computing in their applications. It covers emerging trends, futuristic visions, and the inherent challenges that come with this relationship. The study examines how AI plays a role in enabling navigation, detecting and tracking objects, monitoring wildlife, enhancing precision agriculture, facilitating rescue operations, conducting surveillance activities, and establishing communication among UAVs using environmentally conscious computing techniques. By delving into the interaction between AI and UAVs, this analysis highlights the potential for these technologies to revolutionise industries such as agriculture, surveillance practices, disaster management strategies, and more. While envisioning possibilities, it also takes a look at ethical considerations, safety concerns, regulatory frameworks to be established, and the responsible deployment of AI-enhanced UAV systems. By consolidating insights from research endeavours in this field, this review provides an understanding of the evolving landscape of AI-powered UAVs while setting the stage for further exploration in this transformative domain

    Autonomous Vehicles

    Get PDF
    This edited volume, Autonomous Vehicles, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of vehicle autonomy. The book comprises nine chapters authored by various researchers and edited by an expert active in the field of study. All chapters are complete in itself but united under a common research study topic. This publication aims to provide a thorough overview of the latest research efforts by international authors, open new possible research paths for further novel developments, and to inspire the younger generations into pursuing relevant academic studies and professional careers within the autonomous vehicle field

    Antenna and Propagation Considerations for Amateur UAV Monitoring

    Get PDF
    The broad application spectrum of unmanned aerial vehicles is making them one of the most promising technologies of Internet of Things era. Proactive prevention for public safety threats is one of the key areas with vast potential of surveillance and monitoring drones. Antennas play a vital role in such applications to establish reliable communication in these scenarios. This paper considers line-of-sight and non-line-of-sight threat scenarios with the perspective of antennas and electromagnetic wave propagation

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure

    Semantic depth estimation with monocular camera for autonomous navigation of small unmanned aircraft

    Get PDF
    Demand for small Unmanned Aircraft (UA) applications in Global Navigation Satellite System (GNSS) denied environment has increased over the years in areas such as internal building infrastructure inspection, indoor security surveillance and stock cycle counting. One of the key challenges in the current development of autonomous UA is the localization and pose estimation in the absence of GNSS signals. Various methods using onboard sensors such as Light Detection and Ranging (LiDAR) have been adopted but with the compromise of take-off weight and computing complexity. Off-board sensors such as motion trackers or Radio Frequency (RF) based beacons have also been adopted but are costly and limited to a small area of operations within the sensor’s range. With the advancement of computer vision and deep neural networks, and the fact that the majority of consumer and commercial UA comes equipped with high resolution cameras, it is now even more possible to exploit camera images for navigational tasks. To enhance the accuracy of traditional computer vision methods, machine learning can be adopted to model complex image variations for more accurate predictions. In this thesis, a novel approach based on Semantic Depth Prediction (SDP) was proposed for small UA to perform path planning in GNSS denied environments using its onboard monocular camera. The objective of SDP isto perform 3D scene reconstruction using deep convolution neural network using 2D images captured through a single forward-looking onboard camera thus eliminating the use of expensive and complex sensors. SDP was modeled based on open-source image data set (like NYU2 and SunRGB-D) and real image data sets taken from the actual environments to improve of detection accuracy and was tested in an actual indoor warehouse to validate the performance of the proposed SDP concept. Our experiments have shown that combining lightweight mobile Convolutional neural network (CNN) models allows feature tracking navigation tasks to be undertaken by an off the shelve Tello without the need for additional sensors. However, features of interest need to be kept within the center of each frame of image to eliminate the possibility of losing feature of interest over time. Missing objects in SDP output can be linked to partially occluded objects captured in the input image as existing networks are not able to handle missing information and thus cannot detect objects under occlusion

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms
    • …
    corecore