75,598 research outputs found

    An approach to nonstandard quantum mechanics

    Full text link
    We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to non-relativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the M{\o}ller wave operators and the S-Matrix

    Fundamental quantum limits to waveform detection

    Full text link
    Ever since the inception of gravitational-wave detectors, limits imposed by quantum mechanics to the detection of time-varying signals have been a subject of intense research and debate. Drawing insights from quantum information theory, quantum detection theory, and quantum measurement theory, here we prove lower error bounds for waveform detection via a quantum system, settling the long-standing problem. In the case of optomechanical force detection, we derive analytic expressions for the bounds in some cases of interest and discuss how the limits can be approached using quantum control techniques.Comment: v1: first draft, 5 pages; v2: updated and extended, 5 pages + appendices, 2 figures; v3: 8 pages and 3 figure

    Direct detection of quantum entanglement

    Get PDF
    Quantum entanglement, after playing a significant role in the development of the foundations of quantum mechanics, has been recently rediscovered as a new physical resource with potential commercial applications such as, for example, quantum cryptography, better frequency standards or quantum-enhanced positioning and clock synchronization. On the mathematical side the studies of entanglement have revealed very interesting connections with the theory of positive maps. The capacity to generate entangled states is one of the basic requirements for building quantum computers. Hence, efficient experimental methods for detection, verification and estimation of quantum entanglement are of great practical importance. Here, we propose an experimentally viable, \emph{direct} detection of quantum entanglement which is efficient and does not require any \emph{a priori} knowledge about the quantum state. In a particular case of two entangled qubits it provides an estimation of the amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.Comment: 4 pages, 1 eps figure, RevTe
    • …
    corecore