7,766 research outputs found

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    A Framework for Tumor Localization in Robot-Assisted Minimally Invasive Surgery

    Get PDF
    Manual palpation of tissue is frequently used in open surgery, e.g., for localization of tumors and buried vessels and for tissue characterization. The overall objective of this work is to explore how tissue palpation can be performed in Robot-Assisted Minimally Invasive Surgery (RAMIS) using laparoscopic instruments conventionally used in RAMIS. This thesis presents a framework where a surgical tool is moved teleoperatively in a manner analogous to the repetitive pressing motion of a finger during manual palpation. We interpret the changes in parameters due to this motion such as the applied force and the resulting indentation depth to accurately determine the variation in tissue stiffness. This approach requires the sensorization of the laparoscopic tool for force sensing. In our work, we have used a da Vinci needle driver which has been sensorized in our lab at CSTAR for force sensing using Fiber Bragg Grating (FBG). A computer vision algorithm has been developed for 3D surgical tool-tip tracking using the da Vinci \u27s stereo endoscope. This enables us to measure changes in surface indentation resulting from pressing the needle driver on the tissue. The proposed palpation framework is based on the hypothesis that the indentation depth is inversely proportional to the tissue stiffness when a constant pressing force is applied. This was validated in a telemanipulated setup using the da Vinci surgical system with a phantom in which artificial tumors were embedded to represent areas of different stiffnesses. The region with high stiffness representing tumor and region with low stiffness representing healthy tissue showed an average indentation depth change of 5.19 mm and 10.09 mm respectively while maintaining a maximum force of 8N during robot-assisted palpation. These indentation depth variations were then distinguished using the k-means clustering algorithm to classify groups of low and high stiffnesses. The results were presented in a colour-coded map. The unique feature of this framework is its use of a conventional laparoscopic tool and minimal re-design of the existing da Vinci surgical setup. Additional work includes a vision-based algorithm for tracking the motion of the tissue surface such as that of the lung resulting from respiratory and cardiac motion. The extracted motion information was analyzed to characterize the lung tissue stiffness based on the lateral strain variations as the surface inflates and deflates

    Advances in video motion analysis research for mature and emerging application areas

    Get PDF

    Action Recognition in Video by Covariance Matching of Silhouette Tunnels

    Full text link
    Abstract—Action recognition is a challenging problem in video analytics due to event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. Central to these challenges is the way one models actions in video, i.e., action representation. In this paper, an action is viewed as a temporal sequence of local shape-deformations of centroid-centered object silhouettes, i.e., the shape of the centroid-centered object silhouette tunnel. Each action is rep-resented by the empirical covariance matrix of a set of 13-dimensional normalized geometric feature vectors that capture the shape of the silhouette tunnel. The similarity of two actions is measured in terms of a Riemannian metric between their covariance matrices. The silhouette tunnel of a test video is broken into short overlapping segments and each segment is classified using a dictionary of labeled action covariance matrices and the nearest neighbor rule. On a database of 90 short video sequences this attains a correct classification rate of 97%, which is very close to the state-of-the-art, at almost 5-fold reduced computational cost. Majority-vote fusion of segment decisions achieves 100 % classification rate. Keywords-video analysis; action recognition; silhouette tun-nel; covariance matching; generalized eigenvalues; I

    Biolocomotion Detection in Videos

    Get PDF
    Animals locomote for various reasons: to search for food, to find suitable habitat, to pursue prey, to escape from predators, or to seek a mate. The grand scale of biodiversity contributes to the great locomotory design and mode diversity. In this dissertation, the locomotion of general biological species is referred to as biolocomotion. The goal of this dissertation is to develop a computational approach to detect biolocomotion in any unprocessed video. The ways biological entities locomote through an environment are extremely diverse. Various creatures make use of legs, wings, fins, and other means to move through the world. Significantly, the motion exhibited by the body parts to navigate through an environment can be modelled by a combination of an overall positional advance with an overlaid asymmetric oscillatory pattern, a distinctive signature that tends to be absent in non-biological objects in locomotion. In this dissertation, this key trait of positional advance with asymmetric oscillation along with differences in an object's common motion (extrinsic motion) and localized motion of its parts (intrinsic motion) is exploited to detect biolocomotion. In particular, a computational algorithm is developed to measure the presence of these traits in tracked objects to determine if they correspond to a biological entity in locomotion. An alternative algorithm, based on generic handcrafted features combined with learning is assembled out of components from allied areas of investigation, also is presented as a basis of comparison to the main proposed algorithm. A novel biolocomotion dataset encompassing a wide range of moving biological and non-biological objects in natural settings is provided. Additionally, biolocomotion annotations to an extant camouflage animals dataset also is provided. Quantitative results indicate that the proposed algorithm considerably outperforms the alternative approach, supporting the hypothesis that biolocomotion can be detected reliably based on its distinct signature of positional advance with asymmetric oscillation and extrinsic/intrinsic motion dissimilarity

    Frame registration for motion compensation in imaging photoplethysmography

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Imaging photoplethysmography (iPPG) is an emerging technology used to assess microcirculation and cardiovascular signs by collecting backscattered light from illuminated tissue using optical imaging sensors. An engineering approach is used to evaluate whether a silicone cast of a human palm might be effectively utilized to predict the results of image registration schemes for motion compensation prior to their application on live human tissue. This allows us to establish a performance baseline for each of the algorithms and to isolate performance and noise fluctuations due to the induced motion from the temporally changing physiological signs. A multi-stage evaluation model is developed to qualitatively assess the influence of the region of interest (ROI), system resolution and distance, reference frame selection, and signal normalization on extracted iPPG waveforms from live tissue. We conclude that the application of image registration is able to deliver up to 75% signal-to-noise (SNR) improvement (4.75 to 8.34) over an uncompensated iPPG signal by employing an intensity-based algorithm with a moving reference frame

    Visual Human Tracking and Group Activity Analysis: A Video Mining System for Retail Marketing

    Get PDF
    Thesis (PhD) - Indiana University, Computer Sciences, 2007In this thesis we present a system for automatic human tracking and activity recognition from video sequences. The problem of automated analysis of visual information in order to derive descriptors of high level human activities has intrigued computer vision community for decades and is considered to be largely unsolved. A part of this interest is derived from the vast range of applications in which such a solution may be useful. We attempt to find efficient formulations of these tasks as applied to the extracting customer behavior information in a retail marketing context. Based on these formulations, we present a system that visually tracks customers in a retail store and performs a number of activity analysis tasks based on the output from the tracker. In tracking we introduce new techniques for pedestrian detection, initialization of the body model and a formulation of the temporal tracking as a global trans-dimensional optimization problem. Initial human detection is addressed by a novel method for head detection, which incorporates the knowledge of the camera projection model.The initialization of the human body model is addressed by newly developed shape and appearance descriptors. Temporal tracking of customer trajectories is performed by employing a human body tracking system designed as a Bayesian jump-diffusion filter. This approach demonstrates the ability to overcome model dimensionality ambiguities as people are leaving and entering the scene. Following the tracking, we developed a two-stage group activity formulation based upon the ideas from swarming research. For modeling purposes, all moving actors in the scene are viewed here as simplistic agents in the swarm. This allows to effectively define a set of inter-agent interactions, which combine to derive a distance metric used in further swarm clustering. This way, in the first stage the shoppers that belong to the same group are identified by deterministically clustering bodies to detect short term events and in the second stage events are post-processed to form clusters of group activities with fuzzy memberships. Quantitative analysis of the tracking subsystem shows an improvement over the state of the art methods, if used under similar conditions. Finally, based on the output from the tracker, the activity recognition procedure achieves over 80% correct shopper group detection, as validated by the human generated ground truth results
    • …
    corecore