2,910 research outputs found

    Organizing the Technical Debt Landscape

    Get PDF
    To date, several methods and tools for detecting source code and design anomalies have been developed. While each method focuses on identifying certain classes of source code anomalies that potentially relate to technical debt (TD), the overlaps and gaps among these classes and TD have not been rigorously demonstrated. We propose to construct a seminal technical debt landscape as a way to visualize and organize research on the subjec

    Using Automatic Static Analysis to Identify Technical Debt

    Get PDF
    The technical debt (TD) metaphor describes a tradeoff between short-term and long-term goals in software development. Developers, in such situations, accept compromises in one dimension (e.g. maintainability) to meet an urgent demand in another dimension (e.g. delivering a release on time). Since TD produces interests in terms of time spent to correct the code and accomplish quality goals, accumulation of TD in software systems is dangerous because it could lead to more difficult and expensive maintenance. The research presented in this paper is focused on the usage of automatic static analysis to identify Technical Debt at code level with respect to different quality dimensions. The methodological approach is that of Empirical Software Engineering and both past and current achieved results are presented, focusing on functionality, efficiency and maintainabilit

    What to Fix? Distinguishing between design and non-design rules in automated tools

    Full text link
    Technical debt---design shortcuts taken to optimize for delivery speed---is a critical part of long-term software costs. Consequently, automatically detecting technical debt is a high priority for software practitioners. Software quality tool vendors have responded to this need by positioning their tools to detect and manage technical debt. While these tools bundle a number of rules, it is hard for users to understand which rules identify design issues, as opposed to syntactic quality. This is important, since previous studies have revealed the most significant technical debt is related to design issues. Other research has focused on comparing these tools on open source projects, but these comparisons have not looked at whether the rules were relevant to design. We conducted an empirical study using a structured categorization approach, and manually classify 466 software quality rules from three industry tools---CAST, SonarQube, and NDepend. We found that most of these rules were easily labeled as either not design (55%) or design (19%). The remainder (26%) resulted in disagreements among the labelers. Our results are a first step in formalizing a definition of a design rule, in order to support automatic detection.Comment: Long version of accepted short paper at International Conference on Software Architecture 2017 (Gothenburg, SE

    Comparing Four Approaches for Technical Debt Identification

    Get PDF
    Background: Software systems accumulate technical debt (TD) when short-term goals in software development are traded for long term goals (e.g., quick-and-dirty implementation to reach a release date vs. a well-refactored implementation that supports the long term health of the project). Some forms of TD accumulate over time in the form of source code that is difficult to work with and exhibits a variety of anomalies. A number of source code analysis techniques and tools have been proposed to potentially identify the code-level debt accumulated in a system. What has not yet been studied is if using multiple tools to detect TD can lead to benefits, i.e. if different tools will flag the same or different source code components. Further, these techniques also lack investigation into the symptoms of TD "interest" that they lead to. To address this latter question, we also investigated whether TD, as identified by the source code analysis techniques, correlates with interest payments in the form of increased defect- and change-proneness. Aims: Comparing the results of different TD identification approaches to understand their commonalities and differences and to evaluate their relationship to indicators of future TD "interest". Method: We selected four different TD identification techniques (code smells, automatic static analysis (ASA) issues, grime buildup, and modularity violations) and applied them to 13 versions of the Apache Hadoop open source software project. We collected and aggregated statistical measures to investigate whether the different techniques identified TD indicators in the same or different classes and whether those classes in turn exhibited high interest (in the form of a large number of defects and higher change proneness). Results: The outputs of the four approaches have very little overlap and are therefore pointing to different problems in the source code. Dispersed coupling and modularity violations were co-located in classes with higher defect proneness. We also observed a strong relationship between modularity violations and change proneness. Conclusions: Our main contribution is an initial overview of the TD landscape, showing that different TD techniques are loosely coupled and therefore indicate problems in different locations of the source code. Moreover, our proxy interest indicators (change- and defect-proneness) correlate with only a small subset of TD indicator

    Comparing Four Approaches for Technical Debt Identification

    Get PDF
    Background: Software systems accumulate technical debt (TD) when short-term goals in software development are traded for long term goals (e.g., quick-and-dirty implementation to reach a release date vs. a well-refactored implementation that supports the long term health of the project). Some forms of TD accumulate over time in the form of source code that is difficult to work with and exhibits a variety of anomalies. A number of source code analysis techniques and tools have been proposed to potentially identify the code-level debt accumulated in a system. What has not yet been studied is if using multiple tools to detect TD can lead to benefits, i.e. if different tools will flag the same or different source code components. Further, these techniques also lack investigation into the symptoms of TD “interest” that they lead to. To address this latter question, we also investigated whether TD, as identified by the source code analysis techniques, correlates with interest payments in the form of increased defect- and change-proneness. Aims: Comparing the results of different TD identification approaches to understand their commonalities and differences and to evaluate their relationship to indicators of future TD “interest”. Method: We selected four different TD identification techniques (code smells, automatic static analysis (ASA) issues, grime buildup, and modularity violations) and applied them to 13 versions of the Apache Hadoop open source software project. We collected and aggregated statistical measures to investigate whether the different techniques identified TD indicators in the same or different classes and whether those classes in turn exhibited high interest (in the form of a large number of defects and higher change proneness). Results: The outputs of the four approaches have very little overlap and are therefore pointing to different problems in the source code. Dispersed coupling and modularity violations were co-located in classes with higher defect proneness. We also observed a strong relationship between modularity violations and change proneness. Conclusions: Our main contribution is an initial overview of the TD landscape, showing that different TD techniques are loosely coupled and therefore indicate problems in different locations of the source code. Moreover, our proxy interest indicators (change- and defect-proneness) correlate with only a small subset of TD indicators

    Detecting modularity "smells" in dependencies injected with Java annotations

    Get PDF
    Dependency injection is a recent programming mechanism reducing dependencies among components by delegating them to an external entity, called a dependency injection framework. An increasingly popular approach to dependency injection implementation relies upon using Java annotations, a special form of syntactic metadata provided by the dependency injection frameworks. However, uncontrolled use of annotations may lead to potential violations of well-known modularity principles. In this paper we catalogue "bad smells", i.e., modularity-violating annotations defined by the developer or originating from the popular dependency injection frameworks. For each violation we discuss potential implications and propose means of resolving it. By detecting modularity bad smells in Java annotations our approach closes the gap between the state-of-the-art programming practice and currently available analysis techniques

    An analysis of techniques and methods for technical debt management: a reflection from the architecture perspective

    Full text link
    Technical debt is a metaphor referring to the consequences of weak software development. Managing technical debt is necessary in order to keep it under control, and several techniques have been developed with the goal of accomplishing this. However, available techniques have grown disperse and managers lack guidance. This paper covers this gap by providing a systematic mapping of available techniques and methods for technical debt management, covering architectural debt, and identifying existing gaps that prevent to manage technical debt efficiently

    Can Network Analysis Techniques help to Predict Design Dependencies? An Initial Study

    Full text link
    The degree of dependencies among the modules of a software system is a key attribute to characterize its design structure and its ability to evolve over time. Several design problems are often correlated with undesired dependencies among modules. Being able to anticipate those problems is important for developers, so they can plan early for maintenance and refactoring efforts. However, existing tools are limited to detecting undesired dependencies once they appeared in the system. In this work, we investigate whether module dependencies can be predicted (before they actually appear). Since the module structure can be regarded as a network, i.e, a dependency graph, we leverage on network features to analyze the dynamics of such a structure. In particular, we apply link prediction techniques for this task. We conducted an evaluation on two Java projects across several versions, using link prediction and machine learning techniques, and assessed their performance for identifying new dependencies from a project version to the next one. The results, although preliminary, show that the link prediction approach is feasible for package dependencies. Also, this work opens opportunities for further development of software-specific strategies for dependency prediction.Comment: Accepted at ICSA 201

    A Longitudinal Study of Identifying and Paying Down Architectural Debt

    Full text link
    Architectural debt is a form of technical debt that derives from the gap between the architectural design of the system as it "should be" compared to "as it is". We measured architecture debt in two ways: 1) in terms of system-wide coupling measures, and 2) in terms of the number and severity of architectural flaws. In recent work it was shown that the amount of architectural debt has a huge impact on software maintainability and evolution. Consequently, detecting and reducing the debt is expected to make software more amenable to change. This paper reports on a longitudinal study of a healthcare communications product created by Brightsquid Secure Communications Corp. This start-up company is facing the typical trade-off problem of desiring responsiveness to change requests, but wanting to avoid the ever-increasing effort that the accumulation of quick-and-dirty changes eventually incurs. In the first stage of the study, we analyzed the status of the "before" system, which indicated the impacts of change requests. This initial study motivated a more in-depth analysis of architectural debt. The results of this analysis were used to motivate a comprehensive refactoring of the software system. The third phase of the study was a follow-on architectural debt analysis which quantified the improvements made. Using this quantitative evidence, augmented by qualitative evidence gathered from in-depth interviews with Brightsquid's architects, we present lessons learned about the costs and benefits of paying down architecture debt in practice.Comment: Submitted to ICSE-SEIP 201
    • …
    corecore