1,510 research outputs found

    Network-Wide Traffic Anomaly Detection and Localization Based on Robust Multivariate Probabilistic Calibration Model

    Get PDF
    Network anomaly detection and localization are of great significance to network security. Compared with the traditional methods of host computer, single link and single path, the network-wide anomaly detection approaches have distinctive advantages with respect to detection precision and range. However, when facing the actual problems of noise interference or data loss, the network-wide anomaly detection approaches also suffer significant performance reduction or may even become unavailable. Besides, researches on anomaly localization are rare. In order to solve the mentioned problems, this paper presents a robust multivariate probabilistic calibration model for network-wide anomaly detection and localization. It applies the latent variable probability theory with multivariate t-distribution to establish the normal traffic model. Not only does the algorithm implement network anomaly detection by judging whether the sample’s Mahalanobis distance exceeds the threshold, but also it locates anomalies by contribution analysis. Both theoretical analysis and experimental results demonstrate its robustness and wider use. The algorithm is applicable when dealing with both data integrity and loss. It also has a stronger resistance over noise interference and lower sensitivity to the change of parameters, all of which indicate its performance stability

    Spatiotemporal graphical modeling for cyber-physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are combinations of physical processes and network computation. Modern CPSs such as smart buildings, power plants, transportation networks, and power-grids have shown tremendous potential for increased efficiency, robustness, and resilience. However, such modern CPSs encounter a large variety of physical faults and cyber anomalies, and in many cases are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among their sub-systems. To address these issues, this study proposes a graphical modeling framework to monitor and predict the performance of CPSs in a scalable and robust way. This thesis investigates on two critical CPS applications to evaluate the effectiveness of this proposed framework, namely (i) health monitoring of highway traffic sensors and (ii) building energy consumption prediction. In highway traffic sensor networks, accurate traffic sensor data is essential for traffic operation management systems and acquisition of real-time traffic surveillance data depends heavily on the reliability of the physical systems. Therefore, detecting the health status of the sensors in a traffic sensor network is critical for the departments of transportation as well as other public and private entities, especially in the circumstances where real-time decision making is required. With the purpose of efficiently determining the traffic network status and identifying failed sensor(s), this study proposes a cost-effective spatiotemporal graphical modeling approach called spatiotemporal pattern network (STPN). Traffic speed and volume measurement sensors are used in this work to formulate and analyze the proposed sensor health monitoring system. The historical time-series data from the networked traffic sensors on the Interstate 35 (I-35) within the state of Iowa is used for validation. Based on the validation results, this study demonstrates that the proposed graphical modeling approach can: (i) extract spatiotemporal dependencies among the different sensors which lead to an efficient graphical representation of the sensor network in the information space, and (ii) distinguish and quantify a sensor issue by leveraging the extracted spatiotemporal relationship of the candidate sensor(s) to the other sensors in the network. In the building energy consumption prediction case, we consider the fact that energy performance of buildings is primarily affected by the heat exchange with the building outer skin and the surrounding environment. In addition, it is a common practice in building energy simulation (BES) to predict energy usage with a variable degree of accuracy. Therefore, to account for accurate building energy consumption, especially in urban environments with a lot of anthropogenic heat sources, it is necessary to consider the microclimate conditions around the building. These conditions are influenced by the immediate environment, such as surrounding buildings, hard surfaces, and trees. Moreover, deployment of sensors to monitor the microclimate information of a building can be quite challenging and therefore, not scalable. Instead of applying local weather data directly on building energy simulation (BES) tools, this work proposes a spatiotemporal pattern network (STPN) based machine learning framework to predict the microclimate information based on the local weather station, which leads to better energy consumption prediction in buildings

    Freeway traffic incident detection using large scale traffic data and cameras

    Get PDF
    Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In this paper, a data-driven AID framework is proposed that can leverage large-scale historical traffic data along with the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two basic steps for traffic pattern estimation. First, we estimate a robust univariate speed threshold using historical traffic information from individual sensors. This step can be parallelized using MapReduce framework thereby making it feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve incident detection performance significantly compared to traditional threshold determination. Second, we leverage the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising. The second research objective involved detecting traffic congestion from camera images. Two modern deep learning techniques, the traditional deep convolutional neural network (DCNN) and you only look once (YOLO) models, were used to detect traffic congestion from camera images. A shallow model, support vector machine (SVM) was also used for comparison and to determine the improvements that might be obtained using costly GPU techniques. The YOLO model achieved the highest accuracy of 91.2%, followed by the DCNN model with an accuracy of 90.2%; 85% of images were correctly classified by the SVM model. Congestion regions located far away from the camera, single-lane blockages, and glare issues were found to affect the accuracy of the models. Sensitivity analysis showed that all of the algorithms were found to perform well in daytime conditions, but nighttime conditions were found to affect the accuracy of the vision system. However, for all conditions, the areas under the curve (AUCs) were found to be greater than 0.9 for the deep models. This result shows that the models performed well in challenging conditions as well. The third and final part of this study aimed at detecting traffic incidents from CCTV videos. We approached the incident detection problem using trajectory-based approach for non-congested conditions and pixel-based approach for congested conditions. Typically, incident detection from cameras has been approached using either supervised or unsupervised algorithms. A major hindrance in the application of supervised techniques for incident detection is the lack of a sufficient number of incident videos and the labor-intensive, costly annotation tasks involved in the preparation of a labeled dataset. In this study, we approached the incident detection problem using semi-supervised techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation (CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle detection was performed using state-of-the-art deep learning-based YOLOv3, and simple online real-time tracking (SORT) was used for tracking. Results showed that CPLE-based trajectory classification outperformed the traditional semi-supervised techniques (self learning and label spreading) and its supervised counterpart by a significant margin. For pixel-based incident detection, we used a novel Histogram of Optical Flow Magnitude (HOFM) feature descriptor to detect incident vehicles using SVM classifier based on all vehicles detected by YOLOv3 object detector. We show in this study that this approach can handle both congested and non-congested conditions. However, trajectory-based approach works considerably faster (45 fps compared to 1.4 fps) and also achieves better accuracy compared to pixel-based approach for non-congested conditions. Therefore, for optimal resource usage, trajectory-based approach can be used for non-congested traffic conditions while for congested conditions, pixel-based approach can be used

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been in the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The lack of a free-lunch theorem implies the need for a diverse set of forecasting methods to tackle an array of applications. This unique article provides a non-systematic review of the theory and the practice of forecasting. We offer a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts, including operations, economics, finance, energy, environment, and social good. We do not claim that this review is an exhaustive list of methods and applications. The list was compiled based on the expertise and interests of the authors. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of the forecasting theory and practice

    New Methods for Network Traffic Anomaly Detection

    Get PDF
    In this thesis we examine the efficacy of applying outlier detection techniques to understand the behaviour of anomalies in communication network traffic. We have identified several shortcomings. Our most finding is that known techniques either focus on characterizing the spatial or temporal behaviour of traffic but rarely both. For example DoS attacks are anomalies which violate temporal patterns while port scans violate the spatial equilibrium of network traffic. To address this observed weakness we have designed a new method for outlier detection based spectral decomposition of the Hankel matrix. The Hankel matrix is spatio-temporal correlation matrix and has been used in many other domains including climate data analysis and econometrics. Using our approach we can seamlessly integrate the discovery of both spatial and temporal anomalies. Comparison with other state of the art methods in the networks community confirms that our approach can discover both DoS and port scan attacks. The spectral decomposition of the Hankel matrix is closely tied to the problem of inference in Linear Dynamical Systems (LDS). We introduce a new problem, the Online Selective Anomaly Detection (OSAD) problem, to model the situation where the objective is to report new anomalies in the system and suppress know faults. For example, in the network setting an operator may be interested in triggering an alarm for malicious attacks but not on faults caused by equipment failure. In order to solve OSAD we combine techniques from machine learning and control theory in a unique fashion. Machine Learning ideas are used to learn the parameters of an underlying data generating system. Control theory techniques are used to model the feedback and modify the residual generated by the data generating state model. Experiments on synthetic and real data sets confirm that the OSAD problem captures a general scenario and tightly integrates machine learning and control theory to solve a practical problem

    Real-time detection of uncalibrated sensors using neural networks

    Get PDF
    Nowadays, sensors play a major role in several fields, such as science, industry and everyday technology. Therefore, the information received from the sensors must be reliable. If the sensors present any anomalies, serious problems can arise, such as publishing wrong theories in scientific papers, or causing production delays in industry. One of the most common anomalies are uncalibrations. An uncalibration occurs when the sensor is not adjusted or standardized by calibration according to a ground truth value. In this work, an online machine-learning based uncalibration detector for temperature, humidity and pressure sensors is presented. This development integrates an artificial neural network as the main component which learns from the behavior of the sensors under calibrated conditions. Then, after being trained and deployed, it detects uncalibrations once they take place. The obtained results show that the proposed system is able to detect the 100% of the presented uncalibration events, although the time response in the detection depends on the resolution of the model for the specific location, i.e., the minimum statistically significant variation in the sensor behavior that the system is able to detect. This architecture can be adapted to different contexts by applying transfer learning, such as adding new sensors or having different environments by re-training the model with minimum amount of dataEuropean Union (UE). H2020 VIMS Grant ID: 878757Ministerio de Ciencia, Innovación y Universidades PID2019-105556GB-C33 (MIND-ROB)European Union H2020 CHIST-ERA SMALL (PCI2019-111841-2

    Deep Neural Networks and Data for Automated Driving

    Get PDF
    This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above
    • …
    corecore