1 research outputs found

    Spectral Complexity of Directed Graphs and Application to Structural Decomposition

    Full text link
    We introduce a new measure of complexity (called spectral complexity) for directed graphs. We start with splitting of the directed graph into its recurrent and non-recurrent parts. We define the spectral complexity metric in terms of the spectrum of the recurrence matrix (associated with the reccurent part of the graph) and the Wasserstein distance. We show that the total complexity of the graph can then be defined in terms of the spectral complexity, complexities of individual components and edge weights. The essential property of the spectral complexity metric is that it accounts for directed cycles in the graph. In engineered and software systems, such cycles give rise to sub-system interdependencies and increase risk for unintended consequences through positive feedback loops, instabilities, and infinite execution loops in software. In addition, we present a structural decomposition technique that identifies such cycles using a spectral technique. We show that this decomposition complements the well-known spectral decomposition analysis based on the Fiedler vector. We provide several examples of computation of spectral and total complexities, including the demonstration that the complexity increases monotonically with the average degree of a random graph. We also provide an example of spectral complexity computation for the architecture of a realistic fixed wing aircraft system.Comment: We added new theoretical results in Section 2 and introduced a new section 2.2 devoted to intuitive and physical explanations of the concepts from the pape
    corecore