1,174 research outputs found

    RECONFIGURABLE COMPUTING: NETWORK INTERFACE CONTROLLER AREA NETWORK (CAN)

    Get PDF
    In current embedded computer system development, the methodologies have experienced significant changes due to the advancement in reconfigurable computing technologies. The availability of large capacity programmable logic devices such as field programmable grid arrays (FPGA) and high-level hardware synthesis tools allows embedded system designers to explore various hardware/software partitioning options in order to obtain the most optimum solution. A type of hardware synthesis tool that is gaining significant footing in the industry is Handel-C. a programming language based on the syntax of C but able to produce gate-level information that can be placed and routed on to an FPGA. Controller Area Network (CAN) is an example of embedded system application widely used in modem automobiles and gaining popularity in manufacturing environments where high-speed and robust networking is needed. CAN was designed on a very simple yet effective protocol where messages are identified by their own unique identifiers. Message collisions are handled through a non-destructive arbitration process, eliminating message re-transmission and unnecessary network overloading. A project to design and implement of a version of CAN is presented in this dissertation. The project was performed based on hardware/software co-design methodology with the utilisation of the above-mentioned reconfigurable computing technologies: FPGA and Handel-C. This disse11ation describes the concepts of hardware/software co-design and rcconfigurable computing: the details of CAN protocol, the fundamentals of Handel-C. design ideas considered and the actual implementation of the system

    A message transmission system with lightweight encryption as a project in a Master subject

    Get PDF
    Master subjects should ideally be very practical, to allow students to apply the knowledge they have acquired to the solving of specific problems. This paper proposes the design of a secure communications system using an SPI bus as a Master subject. The system designed uses a stream cipher to encrypt and decrypt data and allows transmission of random length messages. It also uses CRCs to check message integrity.Ministerio de Ciencia e InnovaciĂłn TEC-2010-1687

    Testing communication reliability with fault injection : Implementation using Robot Framework and SoC-FPGA

    Get PDF
    Taajuusmuuttajia käytetään teollisuudessa laajasti, sillä merkittävän osan teollisuuden sähkönkulutuksesta muodostavat oikosulkumoottorit, joita ajetaan taajuusmuuttajien avulla. Taajuusmuuttajiin on mahdollista kytkeä optiokortteja, jotka lisäävät taajuusmuuttajaan valvonta-, ohjaus- ym. toiminnallisuuksia. Nämä kortit kommunikoivat sarjaliikenneväylän kautta taajuusmuuttajan pääyksikön kanssa. Sarjaliikennelinkissä, kuten taajuusmuuttajan väylällä, voi syntyä virheitä, jotka häiritsevät tietoliikennettä. Sen takia sarjaliikenneprotokolliin on luotu virheentunnistus- ja -korjausmekanismeja, joilla pyritään varmistamaan virheetön tiedon kuljettaminen. Luotettavuutta testaamaan voidaan väylälle generoida virheitä siihen tarkoitetulla laitteella. Tässä diplomityössä luotiin taajuusmuuttajia valmistavan yrityksen, Danfoss Drivesin (aik. Vacon), pyynnöstä häiriögeneraattorijärjestelmä. Järjestelmä koostuu SoC-FPGA-piirillä luodusta virheitä syöttävästä laitteesta, PC-työkalulle luodusta testirajapinnasta sekä Ethernet-kommunikaatiosta niiden välillä. Laite kytketään väylään, ja testirajapinta tekee testaajalle mahdolliseksi luoda mukautettavia testejä ja ajaa testejä käyttäen Robot Framework -testiympäristöä. Diplomityössä tutkittiin ensin sarjakommunikointiväylien yleisimpiä virheentunnistus- ja korjauskeinoja sekä SoC-FPGA-piirien sekä työssä käytetyn Robot Frameworkin ominaisuuksia. Järjestelmä suunniteltiin ylhäältä-alas-periaatteella ensin tunnistamalla kolmen edellä mainitun komponentin päärakenne päätyen lopulta yksittäisten ohjelmafunktioiden logiikan suunnitteluun. Tämän jälkeen laite ja testirajapinta toteutettiin C- ja Python-ohjelmointikielillä käyttäen suunnitellun kaltaista kommunikaatiota näiden kahden komponentin välillä. Lopulta järjestelmä testattiin kaikki komponentit yhteen kytkettynä. Varsinainen injektorilogiikka, joka luo virheitä väylään, ei ollut työn loppuun mennessä vielä toimittavan tahon puolelta valmis, joten järjestelmää ei voitu testata todellisessa ympäristössä. Työssä luodut osuudet voidaan kuitenkin myöhemmin kytkeä kokonaiseen järjestelmään. Työn tärkeimpänä johtopäätöksenä on, että tavoitteiden mukainen järjestelmä saatiin luotua ja testattua toimivaksi mahdollisin osin. Jatkokehityskohteeksi jäi mm. kokonaisen järjestelmän luonti ja testaus oikeaan kommunikaatioväylään kytkettynä.Frequency converters are widely used in industry because a notable part of the industrial electricity consumption is by electrical induction motors driven by frequency converters. It is possible to connect option boards into a frequency converter to add monitoring and control features. These option boards communicate with the main control unit of the frequency converter over a serial communication link. In a serial communication link, e.g. in a frequency converter, it can occur faults that interfere with the transfer. Hence, error handling mechanisms are used to secure transmission of the data without errors. A fault injector device, which generates errors into the data travelling in the link, can be used to test the communication reliability. In this master’s thesis, an error generator system was created for a company, Danfoss Drives (previously Vacon), manufacturing frequency converters. The system consists of a fault injector device created with a SoC-FPGA, a testing interface for a PC tool, and an Ethernet-based communication between these two. The device is connected to a serial communication link, and the testing interface makes it easy for a tester to create and run modifiable fault injection tests using a Robot Framework test environment. At the beginning of the thesis, the most common error detection and correction mechanisms in serial communication and properties of SoC-FPGAs, and Robot Framework were studied. Following this, the system was designed with top-down approach, first identifying the main structure of the components, and finally ending up in designing the logic of individual functions. After this, the device and the testing interface were implemented in C and Python using the designed Ethernet communication between them. After the implementation, the system was tested with all the components combined. The actual fault injection logic was not ready by the end of the thesis, so the tests were not run in a real environment. However, the work is done so that the implemented parts can be later used in a complete system. The most important conclusion is that the system was created and tested to meet the requirements with applicable parts. Further development includes creating a complete system and testing it with a real communication link

    A Review :Implementation of Reed Solomon Error Correction & Detec-tion For Wireless Network 802.16

    Get PDF
    The reed Solomon (255,239) are error-correcting & detecting code. Reed-Solomon codes are the most frequently used digital error control. It is also called as forword error code. The main part of reed-Solomon encoder is the linear feedback shift register that is implemented using VHDL A pipelined RS decoders is proposed of reducing the hardware complexity use the pipelined GFmultiplier in the syndrome computation block, KES block, Forney block, Chien search block and error correction block for provides low com-plexity the extended inversion less Massey-Berlekamp algorithm is used. The extended inversion less Massey-Berlekamp algorithm overcomes both the error locator polynomial and the error evaluator polynomial at the same time

    New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs

    Full text link
    Tesis por compendio[EN] Relevance of electronics towards safety of common devices has only been growing, as an ever growing stake of the functionality is assigned to them. But of course, this comes along the constant need for higher performances to fulfill such functionality requirements, while keeping power and budget low. In this scenario, industry is struggling to provide a technology which meets all the performance, power and price specifications, at the cost of an increased vulnerability to several types of known faults or the appearance of new ones. To provide a solution for the new and growing faults in the systems, designers have been using traditional techniques from safety-critical applications, which offer in general suboptimal results. In fact, modern embedded architectures offer the possibility of optimizing the dependability properties by enabling the interaction of hardware, firmware and software levels in the process. However, that point is not yet successfully achieved. Advances in every level towards that direction are much needed if flexible, robust, resilient and cost effective fault tolerance is desired. The work presented here focuses on the hardware level, with the background consideration of a potential integration into a holistic approach. The efforts in this thesis have focused several issues: (i) to introduce additional fault models as required for adequate representativity of physical effects blooming in modern manufacturing technologies, (ii) to provide tools and methods to efficiently inject both the proposed models and classical ones, (iii) to analyze the optimum method for assessing the robustness of the systems by using extensive fault injection and later correlation with higher level layers in an effort to cut development time and cost, (iv) to provide new detection methodologies to cope with challenges modeled by proposed fault models, (v) to propose mitigation strategies focused towards tackling such new threat scenarios and (vi) to devise an automated methodology for the deployment of many fault tolerance mechanisms in a systematic robust way. The outcomes of the thesis constitute a suite of tools and methods to help the designer of critical systems in his task to develop robust, validated, and on-time designs tailored to his application.[ES] La relevancia que la electrónica adquiere en la seguridad de los productos ha crecido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado de una necesidad constante de mayores prestaciones para cumplir con los requerimientos funcionales, al tiempo que se mantienen los costes y el consumo en unos niveles reducidos. En este escenario, la industria está realizando esfuerzos para proveer una tecnología que cumpla con todas las especificaciones de potencia, consumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de fallos conocidos o la introducción de nuevos. Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los diseñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho, las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las propiedades de confiabilidad al habilitar la interacción de los niveles de hardware, firmware y software en el proceso. No obstante, ese punto no está resulto todavía. Se necesitan avances en todos los niveles en la mencionada dirección para poder alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la consideración de fondo de una potencial integración en una estrategia holística. Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la introducción de modelos de fallo adicionales requeridos para la representación adecuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii) la provisión de herramientas y métodos para la inyección eficiente de los modelos propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrategias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza y (vi) la introducción de una metodología automatizada de despliegue de diversos mecanismos de tolerancia a fallos de forma robusta y sistemática. Los resultados de la presente tesis constituyen un conjunto de herramientas y métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de diseños robustos, validados y en tiempo adaptados a su aplicación.[CA] La rellevància que l'electrònica adquireix en la seguretat dels productes ha crescut inexorablement, puix cada volta més aquesta abasta una major influència en la funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d'un constant necessitat de majors prestacions per acomplir els requeriments funcionals, mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest escenari, la indústria està fent esforços per proveir una tecnologia que complisca amb totes les especificacions de potència, consum i preu, tot a costa d'un increment en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de nous tipus. Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors han recorregut a tècniques tradicionalment associades a sistemes crítics per a la seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures empotrades modernes oferixen la possibilitat d'optimitzar les propietats de confiabilitat en habilitar la interacció dels nivells de hardware, firmware i software en el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots els nivells en l'esmentada direcció per poder assolir els objectius d'una tolerància a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra en el nivell de hardware, amb la consideració de fons d'una potencial integració en una estratègia holística. Els esforços d'esta tesi s'han centrat en els següents aspectes: (i) la introducció de models de fallada addicionals requerits per a la representació adequada d'efectes físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de ferramentes i mètodes per a la injecció eficient del models proposats i dels clàssics, (iii) l'anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant l'ús d'injecció de fallades extensiva, i la posterior correlació amb capes de més alt nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades proposats, (v) la proposta d'estratègies de mitigació enfocades cap al tractament dels esmentats escenaris d'amenaça i (vi) la introducció d'una metodologia automatitzada de desplegament de diversos mecanismes de tolerància a fallades de forma robusta i sistemàtica. Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament de dissenys robustos, validats i a temps adaptats a la seua aplicació.Espinosa García, J. (2016). New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73146TESISCompendi

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    MIoTy Overview: a Mathematical Description of the Physical layer

    Get PDF
    MIoTy is a relatively new Low Power Wide Area Network system. The aim of the thesis is to get an overall understanding of the system and an in-depth understanding of the Physical Layer. In particular, a mathematical description of the physical layer is the final aim, Telegram Splitting Multiple Access (TSMA) is the main invention in the MIoTy the technology uses an algorithm to parse the data packets to be transmitted into small sub-packets at the transmission source. MIoTy is based on the protocol family telegram splitting ultra narrowband (TS-UNB) of the ETSI TS 103 357 standards. These TSMA systems have a data rate of 512 bit/s. The UNB telegram is divided at the physical layer into multiple sub-packets, each equal in size. Each of which is randomly sent on a different carrier frequency and at a different time. The sub-packets are much smaller than the original telegram and only require an on-air time of 16 ms. The total air-time of all the sub-packets for a 10-byte telegram is about 390 ms. The risk of suffering data loss resulting from interference is substantially reduced due to a combination of the virtually random distribution of sub-packet transmissions through time and varying frequencies. And, as a result of the use of sophisticated forward error correction (FEC) techniques, the receiver needs only about 50% of the packets to reconstruct the original telegram completely.MIoTy is a relatively new Low Power Wide Area Network system. The aim of the thesis is to get an overall understanding of the system and an in-depth understanding of the Physical Layer. In particular, a mathematical description of the physical layer is the final aim, Telegram Splitting Multiple Access (TSMA) is the main invention in the MIoTy the technology uses an algorithm to parse the data packets to be transmitted into small sub-packets at the transmission source. MIoTy is based on the protocol family telegram splitting ultra narrowband (TS-UNB) of the ETSI TS 103 357 standards. These TSMA systems have a data rate of 512 bit/s. The UNB telegram is divided at the physical layer into multiple sub-packets, each equal in size. Each of which is randomly sent on a different carrier frequency and at a different time. The sub-packets are much smaller than the original telegram and only require an on-air time of 16 ms. The total air-time of all the sub-packets for a 10-byte telegram is about 390 ms. The risk of suffering data loss resulting from interference is substantially reduced due to a combination of the virtually random distribution of sub-packet transmissions through time and varying frequencies. And, as a result of the use of sophisticated forward error correction (FEC) techniques, the receiver needs only about 50% of the packets to reconstruct the original telegram completely

    Design of High Throughput Reconfigurable LDPC CODEC

    Full text link
    Channel coding is an essential part of communication systems, which significantly reduces the error rate of receiving messages. Nowadays, iterative decoding methods play an important role in wireless communication such as 5G, Wi-Fi etc. Low-Density Parity-Check (LDPC) codes are one of the most used iterative decoding codes, which attract lots of interest in a wide range of applications. LDPC codes have a channel approaching capacity, which is practical for implementation as well. The thesis focuses on the design of high throughput reconfigurable LDPC channel codec with good performance. The main focus of this thesis is the design of a novel decoding algorithm for LDPC codes. The new decoding algorithm is configurable to adjust its performance and complexity, which is very flexible for applications. Its error correction capability is close to the sum-product algorithm but with significantly lower complexity. We further implement the LDPC encoder/decoder on FPGA, which is reconfigurable for 5G NR or user-defined LDPC codes. In particular, we apply the new decoding algorithm to the decoder and analyse its performance on hardware. Moreover, we compared the error detection performance of 5G NR CRC and LDPC Syndrome to investigate the necessity of using CRC decoding or LDPC syndrome check, or both in practical systems. At last, a 5G NR physical layer simulating SoC embedded system is built on FPGA for the verification of the encoder and decoder

    Efficient Image Coding and Transmission in Deep Space Communication

    Full text link
    The usefulness of modern digital communication comes from ensuring the data from a source arrives to its destination quickly and correctly. To meet these demands, communication protocols employ data compression and error detection/correction to ensure compactness and accuracy of the data, especially for critical scientific data which requires the use of lossless compression. For example, in deep space communication, information received from satellites to ground stations on Earth come in huge volumes captured with high precision and resolution by space mission instruments, such as Hubble Space Telescope (HST). On-board implementation of communication protocols poses numerous constraints and demands on the high performance given the criticality of data and a high cost of a space mission, including data values. The objectives of this study are to determine which data compression techniques yields the a) minimum data volumes, b) most error resilience, and c) utilize the least amount and power of hardware resources. For this study, a Field Programmable Gate Array (FPGA) will serve as the main component for building the circuitry for each source coding technique. Furthermore, errors are induced based on studies of reported errors rates in deep space communication channels to test for error resilience. Finally, the calculation of resource utilization of the source encoder determines the power and computational usage. Based on the analysis of the error resilience and the characteristics of errors, the requirements to the channel coding are formulated
    • …
    corecore