28,492 research outputs found

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    Analysis of group evolution prediction in complex networks

    Full text link
    In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic and mutli-stage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well

    Detecting Covert Networks in Multilingual Groups: Evidence within a Virtual World

    Get PDF
    This paper introduces an approach for the examination and organization of unstructured text to identify relationships between networks of individuals. This approach uses discourse analysis to identify information providers and recipients and determines the structure of covert organizations irrespective of the language that facilitate conversations between members. Then, this method applies social network analytics to determine the arrangement of a covert organization without any a priori knowledge of the network structure. This approach is tested and validated using communication data collected in a virtual world setting. Our analysis indicates that the proposed framework successfully detected the covert structure of three information networks, and their cliques, within an online gaming community during a simulation of a large-scale event
    corecore