4 research outputs found

    Converse Lyapunov theorems for discrete-time linear switching systems with regular switching sequences

    Full text link
    We present a stability analysis framework for the general class of discrete-time linear switching systems for which the switching sequences belong to a regular language. They admit arbitrary switching systems as special cases. Using recent results of X. Dai on the asymptotic growth rate of such systems, we introduce the concept of multinorm as an algebraic tool for stability analysis. We conjugate this tool with two families of multiple quadratic Lyapunov functions, parameterized by an integer T >= 1, and obtain converse Lyapunov Theorems for each. Lyapunov functions of the first family associate one quadratic form per state of the automaton defining the switching sequences. They are made to decrease after every T successive time steps. The second family is made of the path-dependent Lyapunov functions of Lee and Dullerud. They are parameterized by an amount of memory (T-1) >= 0. Our converse Lyapunov theorems are finite. More precisely, we give sufficient conditions on the asymptotic growth rate of a stable system under which one can compute an integer parameter T >= 1 for which both types of Lyapunov functions exist. As a corollary of our results, we formulate an arbitrary accurate approximation scheme for estimating the asymptotic growth rate of switching systems with constrained switching sequences

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente
    corecore