319 research outputs found

    NUMFabric: Fast and Flexible Bandwidth Allocation in Datacenters

    Get PDF
    We present xFabric, a novel datacenter transport design that provides flexible and fast bandwidth allocation control. xFabric is flexible: it enables operators to specify how bandwidth is allocated amongst contending flows to optimize for different service-level objectives such as minimizing flow completion times, weighted allocations, different notions of fairness, etc. xFabric is also very fast, it converges to the specified allocation one-to-two order of magnitudes faster than prior schemes. Underlying xFabric, is a novel distributed algorithm that uses in-network packet scheduling to rapidly solve general network utility maximization problems for bandwidth allocation. We evaluate xFabric using realistic datacenter topologies and highly dynamic workloads and show that it is able to provide flexibility and fast convergence in such stressful environments.Google Faculty Research Awar

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented

    Distributed estimation and control of interacting hybrid systems for traffic applications

    Get PDF

    Empowering Cloud Data Centers with Network Programmability

    Get PDF
    Cloud data centers are a critical infrastructure for modern Internet services such as web search, social networking and e-commerce. However, the gradual slow-down of Moore’s law has put a burden on the growth of data centers’ performance and energy efficiency. In addition, the increasing of millisecond-scale and microsecond-scale tasks also bring higher requirements to the throughput and latency for the cloud applications. Today’s server-based solutions are hard to meet the performance requirements in many scenarios like resource management, scheduling, high-speed traffic monitoring and testing. In this dissertation, we study these problems from a network perspective. We investigate a new architecture that leverages the programmability of new-generation network switches to improve the performance and reliability of clouds. As programmable switches only provide very limited memory and functionalities, we exploit compact data structures and deeply co-design software and hardware to best utilize the resource. More specifically, this dissertation presents four systems: (i) NetLock: A new centralized lock management architecture that co-designs programmable switches and servers to simultaneously achieve high performance and rich policy support. It provides orders-of-magnitude higher throughput than existing systems with microsecond-level latency, and supports many commonly-used policies such as performance isolation. (ii) HCSFQ: A scalable and practical solution to implement hierarchical fair queueing on commodity hardware at line rate. Instead of relying on a hierarchy of queues with complex queue management, HCSFQ does not keep per-flow states and uses only one queue to achieve hierarchical fair queueing. (iii) AIFO: A new approach for programmable packet scheduling that only uses a single FIFO queue. AIFO utilizes an admission control mechanism to approximate PIFO which is theoretically ideal but hard to implement with commodity devices. (iv) Lumina: A tool that enables fine-grained analysis of hardware network stack. By exploiting network programmability to emulate various network scenarios, Lumina is able to help users understand the micro-behaviors of hardware network stacks

    Energy-Efficient Interconnection Networks for High-Performance Computing

    Get PDF
    In recent years, energy has become one of the most important factors for de- signing and operating large scale computing systems. This is particularly true in high-performance computing, where systems often consist of thousands of nodes. Especially after the end of Dennard’s scaling, the demand for energy- proportionality in components, where energy is depending linearly on utilization, increases continuously. As the main contributor to the overall power consumption, processors have received the main attention so far. The increasing energy proportionality of processors, however, shifts the focus to other components such as interconnection networks. Their share of the overall power consumption is expected to increase to 20% or more while other components further increase their efficiency in the near future. Hence, it is crucial to improve energy proportionality in interconnection networks likewise to reduce overall power and energy consumption. To facilitate these attempts, this work provides comprehensive studies about energy saving in interconnection networks at different levels. First, interconnection networks differ fundamentally from other components in their underlying technology. To gain a deeper understanding of these differences and to identify targets for energy savings, this work provides a detailed power analysis of current network hardware. Furthermore, various applications at different scales are analyzed regarding their communication patterns and locality properties. The findings show that communication makes up only a small fraction of the execution time and networks are actually idling most of the time. Another observation is that point-to-point communication often only occurs within various small subsets of all participants, which indicates that a coordinated mapping could further decrease network traffic. Based on these studies, three different energy-saving policies are designed, which all differ in their implementation and focus. Then, these policies are evaluated in an event-based, power-aware network simulator. While two policies that operate completely local at link level, enable significant energy savings of more than 90% in most analyses, the hybrid one does not provide further benefits despite significant additional design effort. Additionally, these studies include network design parameters, such as transition time between different link configurations, as well as the three most common topologies in supercomputing systems. The final part of this work addresses the interactions of congestion management and energy-saving policies. Although both network management strategies aim for different goals and use opposite approaches, they complement each other and can increase energy efficiency in all studies as well as improve the performance overhead as opposed to plain energy saving
    • …
    corecore